mmdeploy/csrc/graph/task.cpp
lzhangzz 640aa03538
Support Windows (#106)
* minor changes

* support windows

* fix GCC build

* fix lint

* reformat

* fix Windows build

* fix GCC build

* search backend ops for onnxruntime

* fix lint

* fix lint

* code clean-up

* code clean-up

* fix clang build

* fix trt support

* fix cmake for ncnn

* fix cmake for openvino

* fix SDK Python API

* handle ops for other backends (ncnn, trt)

* handle SDK Python API library location

* robustify linkage

* fix cuda

* minor fix for openvino & ncnn

* use CMAKE_CUDA_ARCHITECTURES if set

* fix cuda preprocessor

* fix misc

* fix pplnn & pplcv, drop support for pplcv<0.6.0

* robustify cmake

* update build.md (#2)

* build dynamic modules as module library & fix demo (partially)

* fix candidate path for mmdeploy_python

* move "enable CUDA" to cmake config for demo

* refine demo cmake

* add comment

* fix ubuntu build

* revert docs/en/build.md

* fix C API

* fix lint

* Windows build doc (#3)

* check in docs related to mmdeploy build on windows

* update build guide on windows platform

* update build guide on windows platform

* make path of thirdparty libraries consistent

* make path consistency

* correct build command for custom ops

* correct build command for sdk

* update sdk build instructions

* update doc

* correct build command

* fix lint

* correct build command and fix lint

Co-authored-by: lvhan <lvhan@pjlab.org>

* trailing whitespace (#4)

* minor fix

* fix sr sdk model

* fix type deduction

* fix cudaFree after driver shutting down

* update ppl.cv installation warning (#5)

* fix device allocator threshold & fix lint

* update doc (#6)

* update ppl.cv installation warning

* missing 'git clone'

Co-authored-by: chenxin <chenxin2@sensetime.com>
Co-authored-by: zhangli <zhangli@sensetime.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: lvhan <lvhan@pjlab.org>
2022-02-24 20:08:44 +08:00

109 lines
3.2 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "graph/task.h"
#include "archive/value_archive.h"
#include "core/graph.h"
#include "core/operator.h"
#include "graph/common.h"
namespace mmdeploy::graph {
static int GetDepth(const Value& input) {
if (input.is_array() && input.size() > 0) {
return GetDepth(input[0]) + 1;
}
return input.is_array();
}
// all args are array of the same length
static size_t GetBatchSize(const Value& args) {
size_t batch_size = 0;
for (const auto& x : args) {
if (x.is_array()) {
if (!batch_size) {
batch_size = x.size();
} else if (batch_size != x.size()) {
return 0;
}
} else {
return 0;
}
}
return batch_size;
}
Task::Task(const Value& cfg) : BaseNode(cfg) {
auto module = CreateFromRegistry<Module>(cfg, "module");
if (!module) {
MMDEPLOY_ERROR("failed to create task: {}", cfg);
throw_exception(eFail);
}
module_ = std::move(module).value();
name_ = cfg.value("name", string{});
is_batched_ = cfg.value("is_batched", false);
is_thread_safe_ = cfg.value("is_thread_safe", false);
}
void Task::Build(TaskGraph& graph) {
auto handle = graph.Add([this](Context& ctx) -> Result<void> {
auto args = ctx.pop().array();
auto rets = Value::Array{};
auto batch_size = GetBatchSize(args);
// MMDEPLOY_ERROR("name: {}, is_batched: {}, INPUT batch_size: {}", name_, is_batched_,
// batch_size);
if (!is_batched_ && batch_size) {
rets.resize(outputs_.size(), Value::kArray);
if (!is_thread_safe_) {
for (int i = 0; i < batch_size; ++i) {
Value sample = Value::kArray;
for (const auto& a : args) {
sample.push_back(a[i]);
}
OUTCOME_TRY(auto ret, module_->Process(sample));
for (int j = 0; j < ret.size(); ++j) {
rets[j].push_back(std::move(ret[j]));
}
}
} else {
std::vector<std::function<Result<Value>()>> tasks;
tasks.reserve(batch_size);
OUTCOME_TRY(auto batch_args, DistribAA(args));
for (int sample_id = 0; sample_id < batch_size; ++sample_id) {
tasks.emplace_back([&, sample_id]() -> Result<Value> {
return module_->Process(batch_args[sample_id]);
});
}
auto batch_rets = ctx.Execute(tasks);
for (auto& batch_ret : batch_rets) {
OUTCOME_TRY(auto ret, std::move(batch_ret));
for (int j = 0; j < rets.size(); ++j) {
rets[j].push_back(std::move(ret[j]));
}
}
}
} else {
OUTCOME_TRY(auto&& tmp, module_->Process(args));
rets = std::move(tmp).array();
}
ctx.push(std::move(rets));
// MMDEPLOY_ERROR("name: {}, is_batched: {}, OUTPUT batch_size: {}", name_, is_batched_,
// GetBatchSize(rets));
return success();
});
handle->set_name(name_);
}
class TaskNodeCreator : public Creator<Node> {
public:
const char* GetName() const override { return "Task"; }
int GetVersion() const override { return 0; }
std::unique_ptr<Node> Create(const Value& value) override {
return std::make_unique<Task>(value);
}
};
REGISTER_MODULE(Node, TaskNodeCreator);
} // namespace mmdeploy::graph