mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* minor changes * support windows * fix GCC build * fix lint * reformat * fix Windows build * fix GCC build * search backend ops for onnxruntime * fix lint * fix lint * code clean-up * code clean-up * fix clang build * fix trt support * fix cmake for ncnn * fix cmake for openvino * fix SDK Python API * handle ops for other backends (ncnn, trt) * handle SDK Python API library location * robustify linkage * fix cuda * minor fix for openvino & ncnn * use CMAKE_CUDA_ARCHITECTURES if set * fix cuda preprocessor * fix misc * fix pplnn & pplcv, drop support for pplcv<0.6.0 * robustify cmake * update build.md (#2) * build dynamic modules as module library & fix demo (partially) * fix candidate path for mmdeploy_python * move "enable CUDA" to cmake config for demo * refine demo cmake * add comment * fix ubuntu build * revert docs/en/build.md * fix C API * fix lint * Windows build doc (#3) * check in docs related to mmdeploy build on windows * update build guide on windows platform * update build guide on windows platform * make path of thirdparty libraries consistent * make path consistency * correct build command for custom ops * correct build command for sdk * update sdk build instructions * update doc * correct build command * fix lint * correct build command and fix lint Co-authored-by: lvhan <lvhan@pjlab.org> * trailing whitespace (#4) * minor fix * fix sr sdk model * fix type deduction * fix cudaFree after driver shutting down * update ppl.cv installation warning (#5) * fix device allocator threshold & fix lint * update doc (#6) * update ppl.cv installation warning * missing 'git clone' Co-authored-by: chenxin <chenxin2@sensetime.com> Co-authored-by: zhangli <zhangli@sensetime.com> Co-authored-by: lvhan028 <lvhan_028@163.com> Co-authored-by: lvhan <lvhan@pjlab.org>
82 lines
2.8 KiB
C++
82 lines
2.8 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "core/utils/device_utils.h"
|
|
#include "core/utils/formatter.h"
|
|
#include "preprocess/transform/normalize.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy::cuda {
|
|
|
|
template <typename T, int channels>
|
|
void Normalize(const T* src, int height, int width, int stride, float* output, const float* mean,
|
|
const float* std, bool to_rgb, cudaStream_t stream);
|
|
|
|
class NormalizeImpl : public ::mmdeploy::NormalizeImpl {
|
|
public:
|
|
explicit NormalizeImpl(const Value& args) : ::mmdeploy::NormalizeImpl(args) {}
|
|
|
|
protected:
|
|
Result<Tensor> NormalizeImage(const Tensor& tensor) override {
|
|
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
|
|
auto src_desc = src_tensor.desc();
|
|
int h = (int)src_desc.shape[1];
|
|
int w = (int)src_desc.shape[2];
|
|
int c = (int)src_desc.shape[3];
|
|
int stride = w * c;
|
|
|
|
TensorDesc dst_desc{device_, DataType::kFLOAT, src_desc.shape, src_desc.name};
|
|
Tensor dst_tensor{dst_desc};
|
|
auto output = dst_tensor.data<float>();
|
|
auto stream = ::mmdeploy::GetNative<cudaStream_t>(stream_);
|
|
|
|
if (DataType::kINT8 == src_desc.data_type) {
|
|
auto input = src_tensor.data<uint8_t>();
|
|
if (3 == c) {
|
|
Normalize<uint8_t, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else if (1 == c) {
|
|
Normalize<uint8_t, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else if (DataType::kFLOAT == src_desc.data_type) {
|
|
auto input = src_tensor.data<float>();
|
|
if (3 == c) {
|
|
Normalize<float, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else if (1 == c) {
|
|
Normalize<float, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
|
|
arg_.to_rgb, stream);
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported channels {}", c);
|
|
return Status(eNotSupported);
|
|
}
|
|
} else {
|
|
MMDEPLOY_ERROR("unsupported data type {}", src_desc.data_type);
|
|
assert(0);
|
|
return Status(eNotSupported);
|
|
}
|
|
return dst_tensor;
|
|
}
|
|
};
|
|
|
|
class NormalizeImplCreator : public Creator<::mmdeploy::NormalizeImpl> {
|
|
public:
|
|
const char* GetName() const override { return "cuda"; }
|
|
int GetVersion() const override { return 1; }
|
|
std::unique_ptr<::mmdeploy::NormalizeImpl> Create(const Value& args) override {
|
|
return make_unique<NormalizeImpl>(args);
|
|
}
|
|
};
|
|
|
|
} // namespace mmdeploy::cuda
|
|
|
|
using mmdeploy::NormalizeImpl;
|
|
using mmdeploy::cuda::NormalizeImplCreator;
|
|
REGISTER_MODULE(NormalizeImpl, NormalizeImplCreator);
|