lzhangzz 640aa03538
Support Windows (#106)
* minor changes

* support windows

* fix GCC build

* fix lint

* reformat

* fix Windows build

* fix GCC build

* search backend ops for onnxruntime

* fix lint

* fix lint

* code clean-up

* code clean-up

* fix clang build

* fix trt support

* fix cmake for ncnn

* fix cmake for openvino

* fix SDK Python API

* handle ops for other backends (ncnn, trt)

* handle SDK Python API library location

* robustify linkage

* fix cuda

* minor fix for openvino & ncnn

* use CMAKE_CUDA_ARCHITECTURES if set

* fix cuda preprocessor

* fix misc

* fix pplnn & pplcv, drop support for pplcv<0.6.0

* robustify cmake

* update build.md (#2)

* build dynamic modules as module library & fix demo (partially)

* fix candidate path for mmdeploy_python

* move "enable CUDA" to cmake config for demo

* refine demo cmake

* add comment

* fix ubuntu build

* revert docs/en/build.md

* fix C API

* fix lint

* Windows build doc (#3)

* check in docs related to mmdeploy build on windows

* update build guide on windows platform

* update build guide on windows platform

* make path of thirdparty libraries consistent

* make path consistency

* correct build command for custom ops

* correct build command for sdk

* update sdk build instructions

* update doc

* correct build command

* fix lint

* correct build command and fix lint

Co-authored-by: lvhan <lvhan@pjlab.org>

* trailing whitespace (#4)

* minor fix

* fix sr sdk model

* fix type deduction

* fix cudaFree after driver shutting down

* update ppl.cv installation warning (#5)

* fix device allocator threshold & fix lint

* update doc (#6)

* update ppl.cv installation warning

* missing 'git clone'

Co-authored-by: chenxin <chenxin2@sensetime.com>
Co-authored-by: zhangli <zhangli@sensetime.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: lvhan <lvhan@pjlab.org>
2022-02-24 20:08:44 +08:00

106 lines
3.4 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "pad.h"
#include "archive/json_archive.h"
using namespace std;
namespace mmdeploy {
PadImpl::PadImpl(const Value& args) : TransformImpl(args) {
arg_.size[0] = arg_.size[1] = 0;
if (args.contains("size") && args["size"].is_number_integer()) {
arg_.size[0] = arg_.size[1] = (args["size"].get<int>());
}
if (args.contains("size") && args["size"].is_array()) {
if (args["size"].size() != 2) {
throw std::invalid_argument("the length of size should be 2");
}
arg_.size[0] = args["size"][0].get<int>();
arg_.size[1] = args["size"][1].get<int>();
}
arg_.size_divisor = args.value("size_divisor", 1);
arg_.pad_val = args.value("pad_val", 0.0f);
arg_.pad_to_square = args.value("pad_to_square", false);
arg_.padding_mode = args.value("padding_mode", std::string("constant"));
}
Result<Value> PadImpl::Process(const Value& input) {
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
Value output = input;
auto img_fields = GetImageFields(input);
for (auto& key : img_fields) {
Tensor output_tensor;
auto tensor = input[key].get<Tensor>();
assert(tensor.desc().shape.size() == 4);
assert(tensor.desc().shape[0] == 1);
assert(tensor.desc().shape[3] == 3 || tensor.desc().shape[3] == 1);
int height = tensor.desc().shape[1];
int width = tensor.desc().shape[2];
if (arg_.pad_to_square) {
int max_size = std::max(tensor.desc().shape[1], tensor.desc().shape[2]);
std::array padding{0, 0, max_size - width, max_size - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_fixed_size"].push_back(max_size);
output["pad_fixed_size"].push_back(max_size);
} else if (arg_.size_divisor != 1) {
auto pad_h = (height + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
auto pad_w = (width + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
std::array padding{0, 0, pad_w - width, pad_h - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_size_divisor"] = arg_.size_divisor;
output["pad_fixed_size"].push_back(pad_h);
output["pad_fixed_size"].push_back(pad_w);
} else {
std::array padding{0, 0, arg_.size[1] - width, arg_.size[0] - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_fixed_size"].push_back(arg_.size[0]);
output["pad_fixed_size"].push_back(arg_.size[1]);
}
output[key] = output_tensor;
for (auto& v : output_tensor.desc().shape) {
output["pad_shape"].push_back(v);
}
}
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
return output;
}
Pad::Pad(const Value& args, int version) : Transform(args) {
auto impl_creator = Registry<PadImpl>::Get().GetCreator(specified_platform_, version);
if (nullptr == impl_creator) {
MMDEPLOY_ERROR("'Pad' is not supported on '{}' platform", specified_platform_);
throw std::domain_error("'Pad' is not supported on specified platform");
}
impl_ = impl_creator->Create(args);
}
class PadCreator : public Creator<Transform> {
public:
const char* GetName() const override { return "Pad"; }
int GetVersion() const override { return version_; }
ReturnType Create(const Value& args) override { return make_unique<Pad>(args, version_); }
private:
int version_{1};
};
REGISTER_MODULE(Transform, PadCreator);
MMDEPLOY_DEFINE_REGISTRY(PadImpl);
} // namespace mmdeploy