mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* minor changes * support windows * fix GCC build * fix lint * reformat * fix Windows build * fix GCC build * search backend ops for onnxruntime * fix lint * fix lint * code clean-up * code clean-up * fix clang build * fix trt support * fix cmake for ncnn * fix cmake for openvino * fix SDK Python API * handle ops for other backends (ncnn, trt) * handle SDK Python API library location * robustify linkage * fix cuda * minor fix for openvino & ncnn * use CMAKE_CUDA_ARCHITECTURES if set * fix cuda preprocessor * fix misc * fix pplnn & pplcv, drop support for pplcv<0.6.0 * robustify cmake * update build.md (#2) * build dynamic modules as module library & fix demo (partially) * fix candidate path for mmdeploy_python * move "enable CUDA" to cmake config for demo * refine demo cmake * add comment * fix ubuntu build * revert docs/en/build.md * fix C API * fix lint * Windows build doc (#3) * check in docs related to mmdeploy build on windows * update build guide on windows platform * update build guide on windows platform * make path of thirdparty libraries consistent * make path consistency * correct build command for custom ops * correct build command for sdk * update sdk build instructions * update doc * correct build command * fix lint * correct build command and fix lint Co-authored-by: lvhan <lvhan@pjlab.org> * trailing whitespace (#4) * minor fix * fix sr sdk model * fix type deduction * fix cudaFree after driver shutting down * update ppl.cv installation warning (#5) * fix device allocator threshold & fix lint * update doc (#6) * update ppl.cv installation warning * missing 'git clone' Co-authored-by: chenxin <chenxin2@sensetime.com> Co-authored-by: zhangli <zhangli@sensetime.com> Co-authored-by: lvhan028 <lvhan_028@163.com> Co-authored-by: lvhan <lvhan@pjlab.org>
142 lines
4.7 KiB
C++
142 lines
4.7 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "resize.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "archive/json_archive.h"
|
|
#include "core/tensor.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy {
|
|
|
|
ResizeImpl::ResizeImpl(const Value& args) : TransformImpl(args) {
|
|
arg_.keep_ratio = args.value<bool>("keep_ratio", false);
|
|
if (args.contains("size")) {
|
|
if (args["size"].is_number_integer()) {
|
|
auto size = args["size"].get<int>();
|
|
arg_.img_scale = {size, size};
|
|
} else if (args["size"].is_array()) {
|
|
if (args["size"].size() != 2) {
|
|
MMDEPLOY_ERROR("'size' expects an array of size 2, but got {}", args["size"].size());
|
|
throw std::length_error("'size' expects an array of size 2");
|
|
}
|
|
auto height = args["size"][0].get<int>();
|
|
auto width = args["size"][1].get<int>();
|
|
arg_.img_scale = {height, width};
|
|
} else {
|
|
MMDEPLOY_ERROR("'size' is expected to be an integer or and array of size 2");
|
|
throw std::domain_error("'size' is expected to be an integer or and array of size 2");
|
|
}
|
|
}
|
|
arg_.interpolation = args.value<string>("interpolation", "bilinear");
|
|
|
|
vector<string> interpolations{"nearest", "bilinear", "bicubic", "area", "lanczos"};
|
|
if (std::find(interpolations.begin(), interpolations.end(), arg_.interpolation) ==
|
|
interpolations.end()) {
|
|
MMDEPLOY_ERROR("'{}' interpolation is not supported", arg_.interpolation);
|
|
throw std::invalid_argument("unexpected interpolation");
|
|
}
|
|
}
|
|
|
|
Result<Value> ResizeImpl::Process(const Value& input) {
|
|
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
|
|
Value output = input;
|
|
auto img_fields = GetImageFields(input);
|
|
|
|
for (auto& key : img_fields) {
|
|
Tensor src_img = input[key].get<Tensor>();
|
|
auto desc = src_img.desc();
|
|
assert(desc.shape.size() == 4);
|
|
|
|
int h = desc.shape[1];
|
|
int w = desc.shape[2];
|
|
int dst_h = 0;
|
|
int dst_w = 0;
|
|
float scale_factor = 0.f;
|
|
|
|
if (input.contains("scale")) {
|
|
assert(input["scale"].is_array() && input["scale"].size() == 2);
|
|
dst_h = input["scale"][0].get<int>();
|
|
dst_w = input["scale"][1].get<int>();
|
|
} else if (input.contains("scale_factor")) {
|
|
assert(input["scale_factor"].is_number());
|
|
scale_factor = input["scale_factor"].get<float>();
|
|
dst_h = int(h * scale_factor + 0.5);
|
|
dst_w = int(w * scale_factor + 0.5);
|
|
} else if (!arg_.img_scale.empty()) {
|
|
MMDEPLOY_WARN(
|
|
"neither 'scale' or 'scale_factor' is provided in input value. "
|
|
"'img_scale' will be used");
|
|
if (-1 == arg_.img_scale[1]) {
|
|
if (w < h) {
|
|
dst_w = arg_.img_scale[0];
|
|
dst_h = dst_w * h / w;
|
|
} else {
|
|
dst_h = arg_.img_scale[0];
|
|
dst_w = dst_h * w / h;
|
|
}
|
|
} else {
|
|
dst_h = arg_.img_scale[0];
|
|
dst_w = arg_.img_scale[1];
|
|
}
|
|
} else {
|
|
MMDEPLOY_ERROR("no resize related parameter is provided");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (arg_.keep_ratio) {
|
|
int max_long_edge = dst_w;
|
|
int max_short_edge = dst_h;
|
|
if (max_long_edge < max_short_edge) {
|
|
std::swap(max_long_edge, max_short_edge);
|
|
}
|
|
scale_factor = std::min(max_long_edge * 1.0 / (1.0 * std::max(h, w)),
|
|
max_short_edge * 1.0 / (1.0 * std::min(h, w)));
|
|
dst_w = int(w * scale_factor + 0.5);
|
|
dst_h = int(h * scale_factor + 0.5);
|
|
}
|
|
Tensor dst_img;
|
|
if (dst_h != h || dst_w != w) {
|
|
OUTCOME_TRY(dst_img, ResizeImage(src_img, dst_h, dst_w));
|
|
} else {
|
|
dst_img = src_img;
|
|
}
|
|
auto w_scale = dst_w * 1.0 / w;
|
|
auto h_scale = dst_h * 1.0 / h;
|
|
output["scale_factor"] = {w_scale, h_scale, w_scale, h_scale};
|
|
output["img_shape"] = {1, dst_h, dst_w, desc.shape[3]};
|
|
// output["pad_shape"] = output["img_shape"];
|
|
output["keep_ratio"] = arg_.keep_ratio;
|
|
output[key] = dst_img;
|
|
}
|
|
|
|
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
|
|
return output;
|
|
}
|
|
|
|
Resize::Resize(const Value& args, int version) : Transform(args) {
|
|
auto impl_creator = Registry<ResizeImpl>::Get().GetCreator(specified_platform_, version);
|
|
if (nullptr == impl_creator) {
|
|
MMDEPLOY_ERROR("'Resize' is not supported on '{}' platform", specified_platform_);
|
|
throw std::domain_error("'Resize' is not supported on specified platform");
|
|
}
|
|
impl_ = impl_creator->Create(args);
|
|
}
|
|
|
|
class ResizeCreator : public Creator<Transform> {
|
|
public:
|
|
const char* GetName() const override { return "Resize"; }
|
|
int GetVersion() const override { return version_; }
|
|
ReturnType Create(const Value& args) override { return make_unique<Resize>(args, version_); }
|
|
|
|
private:
|
|
int version_{1};
|
|
};
|
|
|
|
REGISTER_MODULE(Transform, ResizeCreator);
|
|
|
|
MMDEPLOY_DEFINE_REGISTRY(ResizeImpl);
|
|
|
|
} // namespace mmdeploy
|