mmdeploy/tests/test_mmcv/test_mmcv_ops.py

246 lines
8.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import onnx
import pytest
import torch
from mmengine import Config
from mmdeploy.apis.onnx import export
from mmdeploy.core import RewriterContext
from mmdeploy.utils import Backend
from mmdeploy.utils.test import (WrapFunction, backend_checker, check_backend,
get_rewrite_outputs)
@pytest.mark.parametrize(
'iou_threshold, score_threshold,max_output_boxes_per_class',
[(0.6, 0.2, 3)])
def test_ONNXNMSop(iou_threshold, score_threshold, max_output_boxes_per_class):
boxes = torch.tensor([[[291.1746, 316.2263, 343.5029, 347.7312],
[288.4846, 315.0447, 343.7267, 346.5630],
[288.5307, 318.1989, 341.6425, 349.7222],
[918.9102, 83.7463, 933.3920, 164.9041],
[895.5786, 78.2361, 907.8049, 172.0883],
[292.5816, 316.5563, 340.3462, 352.9989],
[609.4592, 83.5447, 631.2532, 144.0749],
[917.7308, 85.5870, 933.2839, 168.4530],
[895.5138, 79.3596, 908.2865, 171.0418],
[291.4747, 318.6987, 347.1208, 349.5754]]])
scores = torch.rand(1, 5, 10)
from mmdeploy.mmcv.ops import ONNXNMSop
def wrapped_function(torch_bboxes, torch_scores):
return ONNXNMSop.apply(torch_bboxes, torch_scores,
max_output_boxes_per_class, iou_threshold,
score_threshold)
wrapped_model = WrapFunction(wrapped_function).eval()
result = wrapped_model(boxes, scores)
assert result is not None
onnx_file_path = tempfile.NamedTemporaryFile(suffix='.onnx').name
onnx_file_prefix = osp.splitext(onnx_file_path)[0]
export(
wrapped_model, (boxes, scores),
onnx_file_prefix,
keep_initializers_as_inputs=False,
input_names=['boxes', 'scores'],
output_names=['result'],
opset_version=11)
model = onnx.load(onnx_file_path)
assert model.graph.node[3].op_type == 'NonMaxSuppression'
def test_deform_conv_openvino():
check_backend(Backend.OPENVINO)
input = torch.Tensor([[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]])
offset = torch.Tensor([[[[1.7000, 2.9000], [3.4000, 4.8000]],
[[1.1000, 2.0000], [2.1000, 1.9000]],
[[3.1000, 5.1000], [5.9000, 4.9000]],
[[2.0000, 4.1000], [4.0000, 6.6000]],
[[1.6000, 2.7000], [3.8000, 3.1000]],
[[2.5000, 4.3000], [4.2000, 5.3000]],
[[1.7000, 3.3000], [3.6000, 4.5000]],
[[1.7000, 3.4000], [5.2000, 6.1000]]]])
expected_output = torch.Tensor([[[[1.6500, 0.0000], [0.0000, 0.0000]]]])
from mmcv.ops.deform_conv import DeformConv2dFunction
def wrapped_function(input, offset):
weight = torch.Tensor([[[[0.4000, 0.2000], [0.1000, 0.9000]]]])
stride = (1, 1)
padding = (0, 0)
dilation = (1, 1)
groups = 1
deform_groups = 1
return DeformConv2dFunction.apply(input, offset, weight, stride,
padding, dilation, groups,
deform_groups)
wrapped_model = WrapFunction(wrapped_function).eval()
model_output = wrapped_model(input, offset)
assert torch.allclose(expected_output, model_output)
onnx_file_path = tempfile.NamedTemporaryFile().name
with RewriterContext({}, backend='openvino'), torch.no_grad():
torch.onnx.export(
wrapped_model, (input, offset),
onnx_file_path,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'offset'],
output_names=['result'],
opset_version=11)
model = onnx.load(onnx_file_path)
assert model.graph.node[1].op_type == 'DeformableConv2D'
assert model.graph.node[1].domain == 'org.openvinotoolkit'
def test_patch_embed_ncnn():
check_backend(Backend.NCNN)
from mmcv.cnn.bricks.transformer import PatchEmbed
input = torch.ones((1, 3, 384, 384))
patch_cfg = {
'in_channels': 3,
'input_size': 384,
'embed_dims': 768,
'conv_type': 'Conv2d',
'kernel_size': 32,
'stride': 32
}
wrapped_model = PatchEmbed(**patch_cfg)
wrapped_model.eval()
with RewriterContext({}, backend='ncnn'), torch.no_grad():
_, shape = wrapped_model(input)
assert shape[0] == patch_cfg['input_size'] / patch_cfg['stride']
@backend_checker(Backend.TENSORRT)
def test_multiclass_nms_static():
from mmdeploy.mmcv.ops import multiclass_nms
deploy_cfg = Config(
dict(
onnx_config=dict(output_names=None, input_shape=None),
backend_config=dict(
type='tensorrt',
common_config=dict(
fp16_mode=False, max_workspace_size=1 << 20),
model_inputs=[
dict(
input_shapes=dict(
boxes=dict(
min_shape=[1, 5, 4],
opt_shape=[1, 5, 4],
max_shape=[1, 5, 4]),
scores=dict(
min_shape=[1, 5, 8],
opt_shape=[1, 5, 8],
max_shape=[1, 5, 8])))
]),
codebase_config=dict(
type='mmdet',
task='ObjectDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.5,
max_output_boxes_per_class=20,
pre_top_k=-1,
keep_top_k=10,
background_label_id=-1,
))))
boxes = torch.rand(1, 5, 4).cuda()
scores = torch.rand(1, 5, 8).cuda()
max_output_boxes_per_class = 20
keep_top_k = 5
nms_type = 'nms'
wrapped_func = WrapFunction(
multiclass_nms,
max_output_boxes_per_class=max_output_boxes_per_class,
nms_type=nms_type,
keep_top_k=keep_top_k)
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_func,
model_inputs={
'boxes': boxes,
'scores': scores
},
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None, 'Got unexpected rewrite '\
'outputs: {}'.format(rewrite_outputs)
@backend_checker(Backend.ASCEND)
def test_multiclass_nms__ascend():
from mmdeploy.mmcv.ops import multiclass_nms
deploy_cfg = Config(
dict(
onnx_config=dict(
input_names=['boxes', 'scores'],
output_names=['dets', 'labels'],
input_shape=None),
backend_config=dict(
type='ascend',
model_inputs=[
dict(input_shapes=dict(boxes=[1, 5, 4], scores=[1, 5, 8]))
]),
codebase_config=dict(
type='mmdet',
task='ObjectDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.5,
max_output_boxes_per_class=20,
pre_top_k=-1,
keep_top_k=10,
background_label_id=-1,
))))
boxes = torch.rand(1, 5, 4)
scores = torch.rand(1, 5, 8)
max_output_boxes_per_class = 20
keep_top_k = 10
nms_type = 'nms'
wrapped_func = WrapFunction(
multiclass_nms,
max_output_boxes_per_class=max_output_boxes_per_class,
nms_type=nms_type,
keep_top_k=keep_top_k)
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_func,
model_inputs={
'boxes': boxes,
'scores': scores
},
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None, 'Got unexpected rewrite '\
'outputs: {}'.format(rewrite_outputs)
def test_modulated_deform_conv():
check_backend(Backend.TORCHSCRIPT)
from mmdeploy.backend.torchscript import ops_available
if not ops_available():
pytest.skip('torchscript custom ops is required.')
from mmcv.ops import ModulatedDeformConv2dPack
from mmdeploy.apis.torch_jit import trace
model = ModulatedDeformConv2dPack(3, 1, 1).eval()
x = torch.rand(1, 3, 16, 16)
jit_model = trace(model, x, None, backend='torchscript')
out = model(x)
jit_out = jit_model(x)
torch.testing.assert_allclose(out, jit_out)