53 lines
1.4 KiB
Python
53 lines
1.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from mmdeploy_python import Segmentor
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='show how to use sdk python api')
|
|
parser.add_argument('device_name', help='name of device, cuda or cpu')
|
|
parser.add_argument(
|
|
'model_path',
|
|
help='path of mmdeploy SDK model dumped by model converter')
|
|
parser.add_argument('image_path', help='path of an image')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def get_palette(num_classes=256):
|
|
state = np.random.get_state()
|
|
# random color
|
|
np.random.seed(42)
|
|
palette = np.random.randint(0, 256, size=(num_classes, 3))
|
|
np.random.set_state(state)
|
|
return [tuple(c) for c in palette]
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
img = cv2.imread(args.image_path)
|
|
|
|
segmentor = Segmentor(
|
|
model_path=args.model_path, device_name=args.device_name, device_id=0)
|
|
seg = segmentor(img)
|
|
|
|
palette = get_palette()
|
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
|
for label, color in enumerate(palette):
|
|
color_seg[seg == label, :] = color
|
|
# convert to BGR
|
|
color_seg = color_seg[..., ::-1]
|
|
|
|
img = img * 0.5 + color_seg * 0.5
|
|
img = img.astype(np.uint8)
|
|
cv2.imwrite('output_segmentation.png', img)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|