* add collect_impl.cpp to cuda device * add dummy compute node wich device elena * add compiler & dynamic library loader * add code to compile with gen code(elena) * move folder * fix lint * add tracer module * add license * update type id * add fuse kernel registry * remove compilier & dynamic_library * update fuse kernel interface * Add elena-mmdeploy project in 3rd-party * Fix README.md * fix cmake file * Support cuda device and clang format all file * Add cudaStreamSynchronize for cudafree * fix cudaStreamSynchronize * rename to __tracer__ * remove unused code * update kernel * update extract elena script * update gitignore * fix ci * Change the crop_size to crop_h and crop_w in arglist * update Tracer * remove cond * avoid allocate memory * add build.sh for elena * remove code * update test * Support bilinear resize with float input * Rename elena-mmdeploy to delete * Introduce public submodule * use get_ref * update elena * update tools * update tools * update fuse transform docs * add fuse transform doc link to get_started * fix shape in crop * remove fuse_transform_ == true check * remove fuse_transform_ member * remove elena_int.h * doesn't dump transform_static.json * update tracer * update CVFusion to remove compile warning * remove mmcv version > 1.5.1 dep * fix tests * update docs * add elena use option * remove submodule of CVFusion * update doc * use auto * use throw_exception(eEntryNotFound); * update Co-authored-by: cx <cx@ubuntu20.04> Co-authored-by: miraclezqc <969226879@qq.com> |
||
---|---|---|
.circleci | ||
.github | ||
cmake | ||
configs | ||
csrc/mmdeploy | ||
demo | ||
docker | ||
docs | ||
mmdeploy | ||
requirements | ||
resources | ||
service/snpe | ||
tests | ||
third_party | ||
tools | ||
.clang-format | ||
.codespell_ignore.txt | ||
.gitignore | ||
.gitmodules | ||
.pre-commit-config.yaml | ||
.pylintrc | ||
.readthedocs.yml | ||
CITATION.cff | ||
CMakeLists.txt | ||
LICENSE | ||
MANIFEST.in | ||
README.md | ||
README_zh-CN.md | ||
requirements.txt | ||
setup.cfg | ||
setup.py |
README.md
English | 简体中文
Introduction
MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project.

Main features
Fully support OpenMMLab models
The currently supported codebases and models are as follows, and more will be included in the future
Multiple inference backends are available
Models can be exported and run in the following backends, and more will be compatible
ONNX Runtime | TensorRT | ppl.nn | ncnn | OpenVINO | LibTorch | snpe | Ascend | Core ML | more |
---|---|---|---|---|---|---|---|---|---|
✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | benchmark |
Efficient and scalable C/C++ SDK Framework
All kinds of modules in the SDK can be extended, such as Transform
for image processing, Net
for Neural Network inference, Module
for postprocessing and so on
Documentation
Please read getting_started for the basic usage of MMDeploy. We also provide tutoials about:
- Build
- User Guide
- Developer Guide
- Custom Backend Ops
- FAQ
- Contributing
Benchmark and Model zoo
You can find the supported models from here and their performance in the benchmark.
Contributing
We appreciate all contributions to MMDeploy. Please refer to CONTRIBUTING.md for the contributing guideline.
Acknowledgement
We would like to sincerely thank the following teams for their contributions to MMDeploy:
Citation
If you find this project useful in your research, please consider citing:
@misc{=mmdeploy,
title={OpenMMLab's Model Deployment Toolbox.},
author={MMDeploy Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdeploy}},
year={2021}
}
License
This project is released under the Apache 2.0 license.
Projects in OpenMMLab
- MMCV: OpenMMLab foundational library for computer vision.
- MIM: MIM installs OpenMMLab packages.
- MMClassification: OpenMMLab image classification toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMEditing: OpenMMLab image and video editing toolbox.
- MMGeneration: OpenMMLab image and video generative models toolbox.
- MMDeploy: OpenMMLab model deployment framework.