Chen Xin 6b01a2e649
[Feature] Add option to fuse transform. (#741)
* add collect_impl.cpp to cuda device

* add dummy compute node wich device elena

* add compiler & dynamic library loader

* add code to compile with gen code(elena)

* move folder

* fix lint

* add tracer module

* add license

* update type id

* add fuse kernel registry

* remove compilier & dynamic_library

* update fuse kernel interface

* Add elena-mmdeploy project in 3rd-party

* Fix README.md

* fix cmake file

* Support cuda device and clang format all file

* Add cudaStreamSynchronize for cudafree

* fix cudaStreamSynchronize

* rename to __tracer__

* remove unused code

* update kernel

* update extract elena script

* update gitignore

* fix ci

* Change the crop_size to crop_h and crop_w in arglist

* update Tracer

* remove cond

* avoid allocate memory

* add build.sh for elena

* remove code

* update test

* Support bilinear resize with float input

* Rename elena-mmdeploy to delete

* Introduce public submodule

* use get_ref

* update elena

* update tools

* update tools

* update fuse transform docs

* add fuse transform doc link to get_started

* fix shape in crop

* remove fuse_transform_ == true check

* remove fuse_transform_ member

* remove elena_int.h

* doesn't dump transform_static.json

* update tracer

* update CVFusion to remove compile warning

* remove mmcv version > 1.5.1 dep

* fix tests

* update docs

* add elena use option

* remove submodule of CVFusion

* update doc

* use auto

* use throw_exception(eEntryNotFound);

* update

Co-authored-by: cx <cx@ubuntu20.04>
Co-authored-by: miraclezqc <969226879@qq.com>
2022-09-05 20:29:18 +08:00

64 lines
2.0 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "image2tensor.h"
#include <cassert>
#include "mmdeploy/archive/json_archive.h"
#include "mmdeploy/core/tensor.h"
#include "mmdeploy/preprocess/transform/tracer.h"
namespace mmdeploy {
ImageToTensorImpl::ImageToTensorImpl(const Value& args) : TransformImpl(args) {
for (auto& key : args["keys"]) {
arg_.keys.push_back(key.get<std::string>());
}
}
Result<Value> ImageToTensorImpl::Process(const Value& input) {
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
Value output = input;
for (auto& key : arg_.keys) {
assert(input.contains(key));
Tensor src_tensor = input[key].get<Tensor>();
auto& shape = src_tensor.desc().shape;
assert(shape.size() == 4);
assert(shape[3] == 1 || shape[3] == 3);
OUTCOME_TRY(auto dst, HWC2CHW(src_tensor));
SetTransformData(output, key, std::move(dst));
if (output.contains("__tracer__")) {
output["__tracer__"].get_ref<Tracer&>().ImageToTensor(src_tensor.data_type());
}
} // for key
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
return output;
}
ImageToTensor::ImageToTensor(const Value& args, int version) : Transform(args) {
auto impl_creator = Registry<ImageToTensorImpl>::Get().GetCreator(specified_platform_, version);
if (nullptr == impl_creator) {
MMDEPLOY_ERROR("'ImageToTensor' is not supported on '{}' platform", specified_platform_);
throw std::domain_error("'ImageToTensor' is not supported on specified platform");
}
impl_ = impl_creator->Create(args);
}
class ImageToTensorCreator : public Creator<Transform> {
public:
const char* GetName() const override { return "ImageToTensor"; }
int GetVersion() const override { return version_; }
ReturnType Create(const Value& args) override {
return std::make_unique<ImageToTensor>(args, version_);
}
private:
int version_{1};
};
REGISTER_MODULE(Transform, ImageToTensorCreator);
MMDEPLOY_DEFINE_REGISTRY(ImageToTensorImpl);
} // namespace mmdeploy