mmdeploy/docs/en/07-developer-guide/regression_test.md

238 lines
12 KiB
Markdown

# How to do regression test
This tutorial describes how to do regression test. The deployment configuration file contains codebase config and inference config.
### 1. Python Environment
```shell
pip install -r requirements/tests.txt
```
If pip throw an exception, try to upgrade numpy.
```shell
pip install -U numpy
```
## 2. Usage
```shell
python ./tools/regression_test.py \
--codebase "${CODEBASE_NAME}" \
--backends "${BACKEND}" \
[--models "${MODELS}"] \
--work-dir "${WORK_DIR}" \
--device "${DEVICE}" \
--log-level INFO \
[--performance 或 -p] \
[--checkpoint-dir "$CHECKPOINT_DIR"]
```
### Description
- `--codebase` : The codebase to test, eg.`mmdet`. If you want to test multiple codebase, use `mmpretrain mmdet ...`
- `--backends` : The backend to test. By default, all `backend`s would be tested. You can use `onnxruntime tesensorrt`to choose several backends. If you also need to test the SDK, you need to configure the `sdk_config` in `tests/regression/${codebase}.yml`.
- `--models` : Specify the model to be tested. All models in `yml` are tested by default. You can also give some model names. For the model name, please refer to the relevant yml configuration file. For example `ResNet SE-ResNet "Mask R-CNN"`. Model name can only contain numbers and letters.
- `--work-dir` : The directory of model convert and report, use `../mmdeploy_regression_working_dir` by default.
- `--checkpoint-dir`: The path of downloaded torch model, use `../mmdeploy_checkpoints` by default.
- `--device` : device type, use `cuda` by default
- `--log-level` : These options are available:`'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. The default value is `INFO`.
- `-p` or `--performance` : Test precision or not. If not enabled, only model convert would be tested.
### Notes
For Windows user:
1. To use the `&&` connector in shell commands, you need to download `PowerShell 7 Preview 5+`.
2. If you are using conda env, you may need to change `python3` to `python` in regression_test.py because there is `python3.exe` in `%USERPROFILE%\AppData\Local\Microsoft\WindowsApps` directory.
## Example
1. Test all backends of mmdet and mmpose for **model convert and precision**
```shell
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO \
--performance
```
2. Test **model convert and precision** of some backends of mmdet and mmpose
```shell
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--backends onnxruntime tensorrt \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO \
-p
```
3. Test some backends of mmdet and mmpose, **only test model convert**
```shell
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--backends onnxruntime tensorrt \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO
```
4. Test some models of mmdet and mmpretrain, **only test model convert**
```shell
python ./tools/regression_test.py \
--codebase mmdet mmpose \
--models ResNet SE-ResNet "Mask R-CNN" \
--work-dir "../mmdeploy_regression_working_dir" \
--device "cuda" \
--log-level INFO
```
## 3. Regression Test Tonfiguration
### Example and parameter description
```yaml
globals:
codebase_dir: ../mmocr # codebase path to test
checkpoint_force_download: False # whether to redownload the model even if it already exists
images:
img_densetext_det: &img_densetext_det ../mmocr/demo/demo_densetext_det.jpg
img_demo_text_det: &img_demo_text_det ../mmocr/demo/demo_text_det.jpg
img_demo_text_ocr: &img_demo_text_ocr ../mmocr/demo/demo_text_ocr.jpg
img_demo_text_recog: &img_demo_text_recog ../mmocr/demo/demo_text_recog.jpg
metric_info: &metric_info
hmean-iou: # metafile.Results.Metrics
eval_name: hmean-iou # test.py --metrics args
metric_key: 0_hmean-iou:hmean # the key name of eval log
tolerance: 0.1 # tolerated threshold interval
task_name: Text Detection # the name of metafile.Results.Task
dataset: ICDAR2015 # the name of metafile.Results.Dataset
word_acc: # same as hmean-iou, also a kind of metric
eval_name: acc
metric_key: 0_word_acc_ignore_case
tolerance: 0.2
task_name: Text Recognition
dataset: IIIT5K
convert_image_det: &convert_image_det # the image that will be used by detection model convert
input_img: *img_densetext_det
test_img: *img_demo_text_det
convert_image_rec: &convert_image_rec
input_img: *img_demo_text_recog
test_img: *img_demo_text_recog
backend_test: &default_backend_test True # whether test model precision for backend
sdk: # SDK config
sdk_detection_dynamic: &sdk_detection_dynamic configs/mmocr/text-detection/text-detection_sdk_dynamic.py
sdk_recognition_dynamic: &sdk_recognition_dynamic configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py
onnxruntime:
pipeline_ort_recognition_static_fp32: &pipeline_ort_recognition_static_fp32
convert_image: *convert_image_rec # the image used by model conversion
backend_test: *default_backend_test # whether inference on the backend
sdk_config: *sdk_recognition_dynamic # test SDK or not. If it exists, use a specific SDK config for testing
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_static.py # the deploy cfg path to use, based on mmdeploy path
pipeline_ort_recognition_dynamic_fp32: &pipeline_ort_recognition_dynamic_fp32
convert_image: *convert_image_rec
backend_test: *default_backend_test
sdk_config: *sdk_recognition_dynamic
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py
pipeline_ort_detection_dynamic_fp32: &pipeline_ort_detection_dynamic_fp32
convert_image: *convert_image_det
deploy_config: configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py
tensorrt:
pipeline_trt_recognition_dynamic_fp16: &pipeline_trt_recognition_dynamic_fp16
convert_image: *convert_image_rec
backend_test: *default_backend_test
sdk_config: *sdk_recognition_dynamic
deploy_config: configs/mmocr/text-recognition/text-recognition_tensorrt-fp16_dynamic-1x32x32-1x32x640.py
pipeline_trt_detection_dynamic_fp16: &pipeline_trt_detection_dynamic_fp16
convert_image: *convert_image_det
backend_test: *default_backend_test
sdk_config: *sdk_detection_dynamic
deploy_config: configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-2240x2240.py
openvino:
# same as onnxruntime backend configuration
ncnn:
# same as onnxruntime backend configuration
pplnn:
# same as onnxruntime backend configuration
torchscript:
# same as onnxruntime backend configuration
models:
- name: crnn # model name
metafile: configs/textrecog/crnn/metafile.yml # the path of model metafile, based on codebase path
codebase_model_config_dir: configs/textrecog/crnn # the basepath of `model_configs`, based on codebase path
model_configs: # the config name to teset
- crnn_academic_dataset.py
pipelines: # pipeline name
- *pipeline_ort_recognition_dynamic_fp32
- name: dbnet
metafile: configs/textdet/dbnet/metafile.yml
codebase_model_config_dir: configs/textdet/dbnet
model_configs:
- dbnet_r18_fpnc_1200e_icdar2015.py
pipelines:
- *pipeline_ort_detection_dynamic_fp32
- *pipeline_trt_detection_dynamic_fp16
# special pipeline can be added like this
- convert_image: xxx
backend_test: xxx
sdk_config: xxx
deploy_config: configs/mmocr/text-detection/xxx
```
## 4. Generated Report
This is an example of mmocr regression test report.
| | Model | Model Config | Task | Checkpoint | Dataset | Backend | Deploy Config | Static or Dynamic | Precision Type | Conversion Result | hmean-iou | word_acc | Test Pass |
| --- | ----- | ---------------------------------------------------------------- | ---------------- | ------------------------------------------------------------------------------------------------------------ | --------- | --------------- | -------------------------------------------------------------------------------------- | ----------------- | -------------- | ----------------- | --------- | -------- | --------- |
| 0 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ../mmdeploy_checkpoints/mmocr/crnn/crnn_academic-a723a1c5.pth | IIIT5K | Pytorch | - | - | - | - | - | 80.5 | - |
| 1 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5/end2end.onnx | x | onnxruntime | configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py | static | fp32 | True | - | 80.67 | True |
| 2 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5 | x | SDK-onnxruntime | configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py | static | fp32 | True | - | x | False |
| 3 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR2015 | Pytorch | - | - | - | - | 0.795 | - | - |
| 4 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR | onnxruntime | configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py | dynamic | fp32 | True | - | - | True |
| 5 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597/end2end.engine | ICDAR | tensorrt | configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-2240x2240.py | dynamic | fp16 | True | 0.793302 | - | True |
| 6 | dbnet | ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597 | ICDAR | SDK-tensorrt | configs/mmocr/text-detection/text-detection_sdk_dynamic.py | dynamic | fp16 | True | 0.795073 | - | True |
## 5. Supported Backends
- [x] ONNX Runtime
- [x] TensorRT
- [x] PPLNN
- [x] ncnn
- [x] OpenVINO
- [x] TorchScript
- [x] SNPE
- [x] MMDeploy SDK
## 6. Supported Codebase and Metrics
| Codebase | Metric | Support |
| ---------- | -------- | ------------------ |
| mmdet | bbox | :heavy_check_mark: |
| | segm | :heavy_check_mark: |
| | PQ | :x: |
| mmpretrain | accuracy | :heavy_check_mark: |
| mmseg | mIoU | :heavy_check_mark: |
| mmpose | AR | :heavy_check_mark: |
| | AP | :heavy_check_mark: |
| mmocr | hmean | :heavy_check_mark: |
| | acc | :heavy_check_mark: |
| mmagic | PSNR | :heavy_check_mark: |
| | SSIM | :heavy_check_mark: |