mmdeploy/tests/test_codebase/test_mmcls/test_classification.py
q.yao d8e4a78636
[Improvement] Better unit test. (#1619)
* update test for mmcls and mmdet

* update det3d mmedit mmocr mmpose mmrotate

* update mmseg

* bug fixing

* refactor ops

* rename variable

* remove comment
2023-02-08 11:30:59 +08:00

157 lines
5.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
from typing import Any
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.apis import build_task_processor
from mmdeploy.utils import load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
model_cfg_path = 'tests/test_codebase/test_mmcls/data/model.py'
@pytest.fixture(scope='module')
def model_cfg():
return load_config(model_cfg_path)[0]
@pytest.fixture(scope='module')
def deploy_cfg():
return mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmcls', task='Classification'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
img_shape = (64, 64)
num_classes = 1000
@pytest.fixture(scope='module')
def task_processor(model_cfg, deploy_cfg):
return build_task_processor(model_cfg, deploy_cfg, 'cpu')
@pytest.fixture(scope='module')
def img():
return np.random.rand(*img_shape, 3)
@pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0])
def test_init_pytorch_model(from_mmrazor: Any, task_processor, deploy_cfg):
from mmcls.models.classifiers.base import BaseClassifier
if from_mmrazor is False:
_task_processor = task_processor
else:
_model_cfg_path = 'tests/test_codebase/test_mmcls/data/' \
'mmrazor_model.py'
_model_cfg = load_config(_model_cfg_path)[0]
_model_cfg.algorithm.architecture.model.type = 'mmcls.ImageClassifier'
_model_cfg.algorithm.architecture.model.backbone = dict(
type='SearchableShuffleNetV2', widen_factor=1.0)
_deploy_cfg = copy.deepcopy(deploy_cfg)
_deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor
_task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu')
if not isinstance(from_mmrazor, bool):
with pytest.raises(
TypeError,
match='`from_mmrazor` attribute must be '
'boolean type! '
f'but got: {from_mmrazor}'):
_ = _task_processor.from_mmrazor
return
assert from_mmrazor == _task_processor.from_mmrazor
if from_mmrazor:
pytest.importorskip('mmrazor', reason='mmrazor is not installed.')
model = _task_processor.init_pytorch_model(None)
assert isinstance(model, BaseClassifier)
@pytest.fixture(scope='module')
def backend_model(task_processor):
from mmdeploy.backend.onnxruntime import ORTWrapper
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(outputs={
'output': torch.rand(1, num_classes),
})
yield task_processor.init_backend_model([''])
def test_init_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
@pytest.fixture(scope='module')
def model_inputs(task_processor, img):
return task_processor.create_input(img, input_shape=img_shape)
def test_create_input(model_inputs):
inputs = model_inputs
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_run_inference(task_processor, backend_model, model_inputs):
input_dict, _ = model_inputs
results = task_processor.run_inference(backend_model, input_dict)
assert results is not None
def test_visualize(task_processor, backend_model, tmp_path, img, model_inputs):
input_dict, _ = model_inputs
results = task_processor.run_inference(backend_model, input_dict)
filename = str(tmp_path / 'tmp.jpg')
task_processor.visualize(backend_model, img, results[0], filename, '')
assert os.path.exists(filename)
def test_get_tensor_from_input(task_processor):
input_data = {'img': torch.ones(3, 4, 5)}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, torch.ones(3, 4, 5))
def test_get_partition_cfg(task_processor):
with pytest.raises(NotImplementedError):
task_processor.get_partition_cfg(partition_type='')
def test_build_dataset_and_dataloader(task_processor, model_cfg):
from torch.utils.data import DataLoader, Dataset
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_single_gpu_test_and_evaluate(task_processor, model_cfg):
from mmcv.parallel import MMDataParallel
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
dataloader = task_processor.build_dataloader(dataset, 1, 1)
# Prepare dummy model
model = DummyModel(outputs=[torch.rand([1, 1000])])
model = MMDataParallel(model, device_ids=[0])
assert model is not None
# Run test
outputs = task_processor.single_gpu_test(model, dataloader)
assert outputs is not None
task_processor.evaluate_outputs(model_cfg, outputs, dataset)