mmdeploy/tests/test_codebase/test_mmdet3d/test_monocular_detection.py
q.yao d8e4a78636
[Improvement] Better unit test. (#1619)
* update test for mmcls and mmdet

* update det3d mmedit mmocr mmpose mmrotate

* update mmseg

* bug fixing

* refactor ops

* rename variable

* remove comment
2023-02-08 11:30:59 +08:00

183 lines
5.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import mmcv
import pytest
import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from mmdeploy.apis import build_task_processor
from mmdeploy.utils import load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
@pytest.fixture(scope='module')
def model_cfg_path():
return 'tests/test_codebase/test_mmdet3d/data/monodet_model_cfg.py'
@pytest.fixture(scope='module')
def img_path():
return 'tests/test_codebase/test_mmdet3d/data/nuscenes/' \
'n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg'
@pytest.fixture(scope='module')
def model_cfg(model_cfg_path):
return load_config(model_cfg_path)[0]
@pytest.fixture(scope='module')
def deploy_cfg():
return mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(
type='mmdet3d',
task='MonocularDetection',
ann_file='tests/test_codebase/test_mmdet3d/data' +
'/nuscenes/n015-2018' +
'-07-24-11-22-45+0800__CAM_BACK__1532402927637525_mono3d' +
'.coco.json'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['img', 'cam2img', 'cam2img_inverse'],
output_names=[
'bboxes', 'scores', 'labels', 'dir_scores', 'attrs'
])))
@pytest.fixture(scope='module')
def task_processor(model_cfg, deploy_cfg):
return build_task_processor(model_cfg, deploy_cfg, 'cpu')
num_classes = 10
num_attr = 5
num_dets = 20
@pytest.fixture(scope='module')
def torch_model(task_processor):
return task_processor.init_pytorch_model(None)
def test_init_pytorch_model(torch_model):
from mmdet3d.models import SingleStageMono3DDetector
assert isinstance(torch_model, SingleStageMono3DDetector)
@pytest.fixture(scope='module')
def backend_model(task_processor):
from mmdeploy.backend.onnxruntime import ORTWrapper
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(
outputs={
'bboxes': torch.rand(1, num_dets, 9),
'scores': torch.rand(1, num_dets),
'labels': torch.randint(num_classes, (1, num_dets)),
'dir_scores': torch.randint(2, (1, num_dets)),
'attrs': torch.randint(num_attr, (1, num_dets))
})
yield task_processor.init_backend_model([''])
def test_init_backend_model(backend_model):
from mmdeploy.codebase.mmdet3d.deploy.monocular_detection_model import \
MonocularDetectionModel
assert isinstance(backend_model, MonocularDetectionModel)
@pytest.fixture(scope='module')
def model_inputs(task_processor, img_path):
return task_processor.create_input(img_path)
@pytest.mark.parametrize('device', ['cpu', 'cuda:0'])
def test_create_input(device, task_processor, model_inputs):
if device == 'cuda:0' and not torch.cuda.is_available():
pytest.skip('cuda is not available')
original_device = task_processor.device
task_processor.device = device
inputs = model_inputs
assert len(inputs) == 2
task_processor.device = original_device
@pytest.mark.skipif(
reason='Only support GPU test', condition=not torch.cuda.is_available())
def test_run_inference(backend_model, task_processor, torch_model,
model_inputs):
task_processor.device = 'cuda:0'
input_dict, _ = model_inputs
torch_results = task_processor.run_inference(torch_model, input_dict)
backend_results = task_processor.run_inference(backend_model, input_dict)
assert torch_results is not None
assert backend_results is not None
assert len(torch_results[0]) == len(backend_results[0])
task_processor.device = 'cpu'
@pytest.mark.skipif(
reason='Only support GPU test', condition=not torch.cuda.is_available())
def test_visualize(task_processor, torch_model, model_inputs, img_path,
tmp_path):
task_processor.device = 'cuda:0'
input_dict, _ = model_inputs
results = task_processor.run_inference(torch_model, input_dict)
filename = str(tmp_path / 'tmp.bin')
task_processor.visualize(torch_model, img_path, results[0], filename,
'test', False)
assert os.path.exists(filename)
task_processor.device = 'cpu'
def test_build_dataset_and_dataloader(task_processor, model_cfg):
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg, dataset_type='test')
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
@pytest.mark.skipif(
reason='Only support GPU test', condition=not torch.cuda.is_available())
def test_single_gpu_test_and_evaluate(task_processor, model_cfg, tmp_path):
from mmcv.parallel import MMDataParallel
task_processor.device = 'cuda:0'
class DummyDataset(Dataset):
def __getitem__(self, index):
return 0
def __len__(self):
return 0
def evaluate(self, *args, **kwargs):
return 0
def format_results(self, *args, **kwargs):
return 0
dataset = DummyDataset()
# Prepare dataloader
dataloader = DataLoader(dataset)
# Prepare dummy model
model = DummyModel(outputs=[torch.rand([1, 10, 5]), torch.rand([1, 10])])
model = MMDataParallel(model, device_ids=[0])
# Run test
outputs = task_processor.single_gpu_test(model, dataloader)
assert isinstance(outputs, list)
output_file = str(tmp_path / 'tmp.pkl')
task_processor.evaluate_outputs(
model_cfg, outputs, dataset, 'bbox', out=output_file, format_only=True)
task_processor.device = 'cpu'