mmdeploy/csrc/codebase/mmseg/segment.cpp

77 lines
2.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "codebase/mmseg/mmseg.h"
#include "core/tensor.h"
#include "core/utils/formatter.h"
#include "preprocess/cpu/opencv_utils.h"
#include "preprocess/transform/transform.h"
#include "preprocess/transform/transform_utils.h"
namespace mmdeploy::mmseg {
static Result<void> VisualizeMask(const std::string &image_name, const Tensor &mask, int height,
int width, Stream &stream) {
Device cpu_device{"cpu"};
OUTCOME_TRY(auto host_mask, MakeAvailableOnDevice(mask, cpu_device, stream));
OUTCOME_TRY(stream.Wait());
// cv::Mat mask_image(height, width, CV_32SC1, host_mask.data<int>());
// cv::imwrite(image_name + ".png", mask_image * 10);
// ofstream ofs(image_name + ".data");
// auto _data_ptr = host_mask.data<int>();
// for (auto i = 0; i < height; ++i) {
// for (auto j = 0; j < width; ++j) {
// ofs << *_data_ptr++ << ", ";
// }
// ofs << "\n";
// }
return success();
}
class ResizeMask : public MMSegmentation {
public:
explicit ResizeMask(const Value &cfg) : MMSegmentation(cfg) {
classes_ = cfg["params"]["num_classes"].get<int>();
}
Result<Value> operator()(const Value &preprocess_result, const Value &inference_result) {
DEBUG("preprocess: {}\ninference: {}", preprocess_result, inference_result);
auto mask = inference_result["output"].get<Tensor>();
INFO("tensor.name: {}, tensor.shape: {}", mask.name(), mask.shape());
assert(mask.data_type() == DataType::kINT32);
assert(mask.shape(0) == 1);
assert(mask.shape(1) == 1);
auto height = (int)mask.shape(2);
auto width = (int)mask.shape(3);
auto input_height = preprocess_result["img_metas"]["ori_shape"][1].get<int>();
auto input_width = preprocess_result["img_metas"]["ori_shape"][2].get<int>();
if (height == input_height && width == input_width) {
SegmentorOutput output{mask, input_height, input_width, classes_};
return to_value(output);
} else {
Device host{"cpu"};
OUTCOME_TRY(auto host_tensor, MakeAvailableOnDevice(mask, host, stream_));
host_tensor.Reshape({1, height, width, 1});
auto mat = cpu::Tensor2CVMat(host_tensor);
auto dst = cpu::Resize(mat, input_height, input_width, "nearest");
auto output_tensor = cpu::CVMat2Tensor(dst);
SegmentorOutput output{output_tensor, input_height, input_width, classes_};
// OUTCOME_TRY(
// VisualizeMask("resize_mask", output_tensor, input_height, input_width,
// stream_));
return to_value(output);
}
}
protected:
int classes_{};
};
REGISTER_CODEBASE_COMPONENT(MMSegmentation, ResizeMask);
} // namespace mmdeploy::mmseg