1
0
mirror of https://github.com/open-mmlab/mmdeploy.git synced 2025-01-14 08:09:43 +08:00
lvhan028 36124f6205
Merge sdk ()
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

110 lines
4.2 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "codebase/mmseg/mmseg.h"
#include "core/tensor.h"
#include "core/utils/formatter.h"
#include "preprocess/transform/transform.h"
#include "preprocess/transform/transform_utils.h"
namespace mmdeploy::mmseg {
static Result<void> VisualizeMask(const std::string &image_name, const Tensor &mask, int height,
int width, Stream &stream) {
Device cpu_device{"cpu"};
OUTCOME_TRY(auto host_mask, MakeAvailableOnDevice(mask, cpu_device, stream));
OUTCOME_TRY(stream.Wait());
// cv::Mat mask_image(height, width, CV_32SC1, host_mask.data<int>());
// cv::imwrite(image_name + ".png", mask_image * 10);
// ofstream ofs(image_name + ".data");
// auto _data_ptr = host_mask.data<int>();
// for (auto i = 0; i < height; ++i) {
// for (auto j = 0; j < width; ++j) {
// ofs << *_data_ptr++ << ", ";
// }
// ofs << "\n";
// }
return success();
}
class Segmentor : public MMSegPostprocess {
public:
explicit Segmentor(const Value &cfg) : MMSegPostprocess(cfg) {
classes_ = cfg["params"]["classes"].get<int>();
if (classes_ >= 256) {
throw_exception(eNotSupported);
}
}
Result<Value> operator()(const Value &preprocess_result, const Value &inference_result) {
DEBUG("preprocess: {}\ninference: {}", preprocess_result, inference_result);
// Value res;
// res = preprocess_result;
auto mask = inference_result["mask"].get<Tensor>();
INFO("tensor.name: {}, tensor.shape: {}", mask.name(), mask.shape());
assert(mask.data_type() == DataType::kINT32);
assert(mask.shape(0) == 1);
assert(mask.shape(1) == 1);
auto height = mask.shape(2);
auto width = mask.shape(3);
// Resize mask back to the size of the input image.
auto input_height = preprocess_result["img_metas"]["ori_shape"][1].get<int>();
auto input_width = preprocess_result["img_metas"]["ori_shape"][2].get<int>();
auto keep_ratio = preprocess_result["img_metas"]["keep_ratio"].get<bool>();
// Construct transform op 'Resize'
Value resize_cfg{{"type", "Resize"}, {"interpolation", "nearest"}};
resize_cfg["context"]["device"] = device_;
resize_cfg["context"]["stream"] = stream_;
resize_cfg["size"].push_back(input_width);
resize_cfg["size"].push_back(input_height);
resize_cfg["keep_ratio"] = keep_ratio;
DEBUG("resize_cfg: {}", resize_cfg);
// Create 'Resize' transform operator and resize the mask
auto creator = Registry<Transform>::Get().GetCreator("Resize");
assert(creator != nullptr);
auto transform = creator->Create(resize_cfg);
assert(transform != nullptr);
// change from (int32_t / 1 channel) to (int8_t / 4 channel), cuz ppl.cv doesn't support
// 'Resize<int>'
TensorShape char4_mask_shape{mask.shape(0), 4, height, width};
TensorDesc desc{device_, DataType::kINT8, char4_mask_shape, mask.name()};
Tensor char4_mask(desc, mask.buffer());
// `Resize` transform op requires {1, h, w, c}, therefore `char4_mask` needs to be reshaped
char4_mask.Reshape({1, height, width, 4});
// Do `Resize`
auto char4_resize_mask = transform->Process({{"img", char4_mask}});
assert(!char4_resize_mask.has_error());
auto _char4_resize_mask = char4_resize_mask.value();
auto _char4_resize_mask_tensor = _char4_resize_mask["img"].get<Tensor>();
assert(_char4_resize_mask_tensor.shape(1) == input_height);
assert(_char4_resize_mask_tensor.shape(2) == input_width);
// change tensor's shape from (int8_4/char4) to (int32_t)
TensorShape int_resize_mask_shape{1, 1, input_height, input_width};
TensorDesc int_resize_mask_desc{_char4_resize_mask_tensor.device(), DataType::kINT32,
int_resize_mask_shape, _char4_resize_mask_tensor.name()};
Tensor _int_resize_mask_tensor{int_resize_mask_desc, _char4_resize_mask_tensor.buffer()};
SegmentorOutput output{_int_resize_mask_tensor, input_height, input_width, classes_};
// OUTCOME_TRY(
// VisualizeMask("resize_mask", _int_resize_mask_tensor, input_height, input_width,
// stream_));
return to_value(output);
}
protected:
int classes_{};
};
REGISTER_CODEBASE_MODULE(MMSegPostprocess, Segmentor);
} // namespace mmdeploy::mmseg