mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* docs(en): update file structure * docs(zh_cn): update * docs(structure): update * docs(snpe): update * docs(README): update * fix(CI): update * fix(CI): index.rst error * fix(docs): update * fix(docs): remove mermaid * fix(docs): remove useless * fix(docs): update link * docs(en): update * docs(en): update * docs(zh_cn): remove \[ * docs(zh_cn): format * docs(en): remove blank * fix(CI): doc link error * docs(project): remove "./" prefix * docs(zh_cn): fix mdformat * docs(en): update title * fix(CI): update docs
2.0 KiB
2.0 KiB
Quantization test result
Currently mmdeploy support ncnn quantization
Quantize with ncnn
mmcls
model | dataset | fp32 top-1 (%) | int8 top-1 (%) |
---|---|---|---|
ResNet-18 | Cifar10 | 94.82 | 94.83 |
ResNeXt-32x4d-50 | ImageNet-1k | 77.90 | 78.20* |
MobileNet V2 | ImageNet-1k | 71.86 | 71.43* |
HRNet-W18* | ImageNet-1k | 76.75 | 76.25* |
Note:
- Because of the large amount of imagenet-1k data and ncnn has not released Vulkan int8 version, only part of the test set (4000/50000) is used.
- The accuracy will vary after quantization, and it is normal for the classification model to increase by less than 1%.
OCR detection
model | dataset | fp32 hmean | int8 hmean |
---|---|---|---|
PANet | ICDAR2015 | 0.795 | 0.792 @thr=0.9 |
Note: mmocr Uses 'shapely' to compute IoU, which results in a slight difference in accuracy