234 lines
13 KiB
Markdown
234 lines
13 KiB
Markdown
# MMSegmentation Deployment
|
|
|
|
- [MMSegmentation Deployment](#mmsegmentation-deployment)
|
|
- [Installation](#installation)
|
|
- [Install mmseg](#install-mmseg)
|
|
- [Install mmdeploy](#install-mmdeploy)
|
|
- [Convert model](#convert-model)
|
|
- [Model specification](#model-specification)
|
|
- [Model inference](#model-inference)
|
|
- [Backend model inference](#backend-model-inference)
|
|
- [SDK model inference](#sdk-model-inference)
|
|
- [Supported models](#supported-models)
|
|
- [Reminder](#reminder)
|
|
|
|
______________________________________________________________________
|
|
|
|
[MMSegmentation](https://github.com/open-mmlab/mmsegmentation/tree/1.x) aka `mmseg` is an open source semantic segmentation toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
|
|
|
|
## Installation
|
|
|
|
### Install mmseg
|
|
|
|
Please follow the [installation guide](https://mmsegmentation.readthedocs.io/en/1.x/get_started.html) to install mmseg.
|
|
|
|
### Install mmdeploy
|
|
|
|
There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device.
|
|
|
|
**Method I:** Install precompiled package
|
|
|
|
> **TODO**. MMDeploy hasn't released based on 1.x branch.
|
|
|
|
**Method II:** Build using scripts
|
|
|
|
If your target platform is **Ubuntu 18.04 or later version**, we encourage you to run
|
|
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
|
|
|
|
```shell
|
|
git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
|
|
cd mmdeploy
|
|
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
|
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
|
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
|
```
|
|
|
|
**NOTE**:
|
|
|
|
- Adding `$(pwd)/build/lib` to `PYTHONPATH` is for importing mmdeploy SDK python module - `mmdeploy_python`, which will be presented in chapter [SDK model inference](#sdk-model-inference).
|
|
- When [inference onnx model by ONNX Runtime](#backend-model-inference), it requests ONNX Runtime library be found. Thus, we add it to `LD_LIBRARY_PATH`.
|
|
|
|
**Method III:** Build from source
|
|
|
|
If neither **I** nor **II** meets your requirements, [building mmdeploy from source](../01-how-to-build/build_from_source.md) is the last option.
|
|
|
|
## Convert model
|
|
|
|
You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmseg models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
|
|
|
|
The command below shows an example about converting `unet` model to onnx model that can be inferred by ONNX Runtime.
|
|
|
|
```shell
|
|
cd mmdeploy
|
|
|
|
# download unet model from mmseg model zoo
|
|
mim download mmsegmentation --config unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 --dest .
|
|
|
|
# convert mmseg model to onnxruntime model with dynamic shape
|
|
python tools/deploy.py \
|
|
configs/mmseg/segmentation_onnxruntime_dynamic.py \
|
|
unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py \
|
|
fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth \
|
|
demo/resources/cityscapes.png \
|
|
--work-dir mmdeploy_models/mmseg/ort \
|
|
--device cpu \
|
|
--show \
|
|
--dump-info
|
|
```
|
|
|
|
It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmseg) of all supported backends for mmsegmentation. The config filename pattern is:
|
|
|
|
```
|
|
segmentation_{backend}-{precision}_{static | dynamic}_{shape}.py
|
|
```
|
|
|
|
- **{backend}:** inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.
|
|
- **{precision}:** fp16, int8. When it's empty, it means fp32
|
|
- **{static | dynamic}:** static shape or dynamic shape
|
|
- **{shape}:** input shape or shape range of a model
|
|
|
|
Therefore, in the above example, you can also convert `unet` to other backend models by changing the deployment config file `segmentation_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmseg), e.g., converting to tensorrt-fp16 model by `segmentation_tensorrt-fp16_dynamic-512x1024-2048x2048.py`.
|
|
|
|
```{tip}
|
|
When converting mmseg models to tensorrt models, --device should be set to "cuda"
|
|
```
|
|
|
|
## Model specification
|
|
|
|
Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference.
|
|
|
|
The converted model locates in the working directory like `mmdeploy_models/mmseg/ort` in the previous example. It includes:
|
|
|
|
```
|
|
mmdeploy_models/mmseg/ort
|
|
├── deploy.json
|
|
├── detail.json
|
|
├── end2end.onnx
|
|
└── pipeline.json
|
|
```
|
|
|
|
in which,
|
|
|
|
- **end2end.onnx**: backend model which can be inferred by ONNX Runtime
|
|
- \***.json**: the necessary information for mmdeploy SDK
|
|
|
|
The whole package **mmdeploy_models/mmseg/ort** is defined as **mmdeploy SDK model**, i.e., **mmdeploy SDK model** includes both backend model and inference meta information.
|
|
|
|
## Model inference
|
|
|
|
### Backend model inference
|
|
|
|
Take the previous converted `end2end.onnx` model as an example, you can use the following code to inference the model and visualize the results.
|
|
|
|
```python
|
|
from mmdeploy.apis.utils import build_task_processor
|
|
from mmdeploy.utils import get_input_shape, load_config
|
|
import torch
|
|
|
|
deploy_cfg = 'configs/mmseg/segmentation_onnxruntime_dynamic.py'
|
|
model_cfg = './unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py'
|
|
device = 'cpu'
|
|
backend_model = ['./mmdeploy_models/mmseg/ort/end2end.onnx']
|
|
image = './demo/resources/cityscapes.png'
|
|
|
|
# read deploy_cfg and model_cfg
|
|
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
|
|
|
# build task and backend model
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
|
model = task_processor.build_backend_model(backend_model)
|
|
|
|
# process input image
|
|
input_shape = get_input_shape(deploy_cfg)
|
|
model_inputs, _ = task_processor.create_input(image, input_shape)
|
|
|
|
# do model inference
|
|
with torch.no_grad():
|
|
result = model.test_step(model_inputs)
|
|
|
|
# visualize results
|
|
task_processor.visualize(
|
|
image=image,
|
|
model=model,
|
|
result=result[0],
|
|
window_name='visualize',
|
|
output_file='./output_segmentation.png')
|
|
```
|
|
|
|
### SDK model inference
|
|
|
|
You can also perform SDK model inference like following,
|
|
|
|
```python
|
|
from mmdeploy_python import Segmentor
|
|
import cv2
|
|
import numpy as np
|
|
|
|
img = cv2.imread('./demo/resources/cityscapes.png')
|
|
|
|
# create a classifier
|
|
segmentor = Segmentor(model_path='./mmdeploy_models/mmseg/ort', device_name='cpu', device_id=0)
|
|
# perform inference
|
|
seg = segmentor(img)
|
|
|
|
# visualize inference result
|
|
## random a palette with size 256x3
|
|
palette = np.random.randint(0, 256, size=(256, 3))
|
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
|
for label, color in enumerate(palette):
|
|
color_seg[seg == label, :] = color
|
|
# convert to BGR
|
|
color_seg = color_seg[..., ::-1]
|
|
img = img * 0.5 + color_seg * 0.5
|
|
img = img.astype(np.uint8)
|
|
cv2.imwrite('output_segmentation.png', img)
|
|
```
|
|
|
|
Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo).
|
|
|
|
## Supported models
|
|
|
|
| Model | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVino |
|
|
| :------------------------------------------------------------------------------------------------------- | :---------: | :------: | :--: | :---: | :------: |
|
|
| [FCN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fcn) | Y | Y | Y | Y | Y |
|
|
| [PSPNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/pspnet)[\*](#static_shape) | Y | Y | Y | Y | Y |
|
|
| [DeepLabV3](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3) | Y | Y | Y | Y | Y |
|
|
| [DeepLabV3+](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3plus) | Y | Y | Y | Y | Y |
|
|
| [Fast-SCNN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fastscnn)[\*](#static_shape) | Y | Y | N | Y | Y |
|
|
| [UNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/unet) | Y | Y | Y | Y | Y |
|
|
| [ANN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ann)[\*](#static_shape) | Y | Y | N | N | N |
|
|
| [APCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/apcnet) | Y | Y | Y | N | N |
|
|
| [BiSeNetV1](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv1) | Y | Y | Y | N | Y |
|
|
| [BiSeNetV2](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv2) | Y | Y | Y | N | Y |
|
|
| [CGNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/cgnet) | Y | Y | Y | N | Y |
|
|
| [DMNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dmnet) | Y | N | N | N | N |
|
|
| [DNLNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dnlnet) | Y | Y | Y | N | Y |
|
|
| [EMANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/emanet) | Y | Y | N | N | Y |
|
|
| [EncNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/encnet) | Y | Y | N | N | Y |
|
|
| [ERFNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/erfnet) | Y | Y | Y | N | Y |
|
|
| [FastFCN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fastfcn) | Y | Y | Y | N | Y |
|
|
| [GCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/gcnet) | Y | Y | N | N | N |
|
|
| [ICNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/icnet)[\*](#static_shape) | Y | Y | N | N | Y |
|
|
| [ISANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/isanet)[\*](#static_shape) | Y | Y | N | N | Y |
|
|
| [NonLocal Net](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/nonlocal_net) | Y | Y | Y | N | Y |
|
|
| [OCRNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ocrnet) | Y | Y | Y | N | Y |
|
|
| [PointRend](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/point_rend)[\*](#static_shape) | Y | Y | N | N | N |
|
|
| [Semantic FPN](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/sem_fpn) | Y | Y | Y | N | Y |
|
|
| [STDC](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/stdc) | Y | Y | Y | N | Y |
|
|
| [UPerNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/upernet)[\*](#static_shape) | Y | Y | N | N | N |
|
|
| [DANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/danet) | Y | Y | N | N | Y |
|
|
| [Segmenter](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/segmenter)[\*](#static_shape) | Y | Y | Y | N | Y |
|
|
| [SegFormer](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/segformer)[\*](#static_shape) | Y | Y | N | N | Y |
|
|
| [SETR](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/setr) | Y | N | N | N | Y |
|
|
| [CCNet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/ccnet) | N | N | N | N | N |
|
|
| [PSANet](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/psanet) | N | N | N | N | N |
|
|
| [DPT](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/dpt) | N | N | N | N | N |
|
|
|
|
## Reminder
|
|
|
|
- Only `whole` inference mode is supported for all mmseg models.
|
|
|
|
- <i id="static_shape">PSPNet, Fast-SCNN</i> only support static shape, because [nn.AdaptiveAvgPool2d](https://github.com/open-mmlab/mmsegmentation/blob/0c87f7a0c9099844eff8e90fa3db5b0d0ca02fee/mmseg/models/decode_heads/psp_head.py#L38) is not supported by most inference backends.
|
|
|
|
- For models that only supports static shape, you should use the deployment config file of static shape such as `configs/mmseg/segmentation_tensorrt_static-1024x2048.py`.
|