q.yao 823ca38646
[Feature] Add NCNN mmdetection support (#49)
* first

* fix0

* fix1

* dirty work

* wip

* add allocator

* finally done!

* lint

* fix lint

* better gather

* better onnx2ncnn

* fix expand

* [Fix] NCNN TensorSlice op bugs (#42)

* fix custom ops support, fix multiple mark bug, add name mapping

* check if the value_info need to be added

* remove unnecessary print

* add nms implement

* two stage split wip

* add two stage split

* add split retinanet visualize

* add two stage split (wip)

* finish two stage split

* fix lint

* move parse string to mmdeploy.utils

* add calib data generator

* create calib dataset

* finish end2end int8

* add split two stage tensorrt visualize

* fix tensorslice bugs

* fix lint

* fix clang-format

* remove comments

* int param

* fix lint

Co-authored-by: grimoire <yaoqian@sensetime.com>

* add two stage ncnn support

* remove unused ops

* git unused config

* remove no_grad, should add in refactor

* add ncnn wrapper

* fix lint

* size return tuple

* Resolve grammar error

* Fix lint

* Trim Trailing Whitespace

* fix trim

* update wrapper

* remove logs

* remove

* csrc optimize

Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
2021-08-26 18:40:14 +08:00

497 lines
19 KiB
C++
Executable File

// right alignment broadcast (c, h, w).
// the same as onnx
#include "expand.h"
#include "../ncnn_ops_definer.h"
namespace mmlab {
using namespace ncnn;
DEFINE_LAYER_CREATOR(Expand)
DEFINE_NCNN_OPS(Expand, Expand)
Expand::Expand() {
one_blob_only = false;
support_inplace = false;
}
int Expand::forward(const std::vector<Mat>& bottom_blobs,
std::vector<Mat>& top_blobs, const Option& opt) const {
const Mat& bottom_blob = bottom_blobs[0];
size_t elemsize = bottom_blob.elemsize;
const Mat& old_shape_blob = bottom_blobs[1];
const int shape_width = old_shape_blob.w - 1;
Mat shape_blob(shape_width, elemsize, opt.workspace_allocator);
memcpy(shape_blob.row(0), old_shape_blob.row(0) + 1, shape_width * elemsize);
Mat& top_blob = top_blobs[0];
if (bottom_blob.dims == 1 && shape_blob.w == 1) {
int shape_0 = (int)(shape_blob[0] + 0.5);
if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d) vs (%d)\n",
bottom_blob.w, shape_0);
} else if (bottom_blob.w == shape_0 || shape_0 == 1) {
top_blob.create(bottom_blob.w, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int i = 0; i < bottom_blob.w; i++) {
top_blob[i] = bottom_blob[i];
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int i = 0; i < shape_0; i++) {
top_blob[i] = bottom_blob[0];
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 1 && shape_blob.w == 2) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (1, %d) vs (%d, %d)\n",
bottom_blob.w, shape_0, shape_1);
} else if (bottom_blob.w == shape_1 || shape_1 == 1) {
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob[i];
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob[0];
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 1 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (1, 1, %d) vs (%d, %d, %d)\n",
bottom_blob.w, shape_0, shape_1, shape_2);
} else if (bottom_blob.w == shape_2 || shape_2 == 1) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob[i];
}
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 2 && shape_blob.w == 1) {
int shape_0 = (int)(shape_blob[0] + 0.5);
if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (1, %d)\n",
bottom_blob.h, bottom_blob.w, shape_0);
} else if (bottom_blob.w == shape_0 || shape_0 == 1) {
top_blob.create(bottom_blob.w, bottom_blob.h, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[i];
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_0, bottom_blob.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_0; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[0];
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 2 && shape_blob.w == 2) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n",
bottom_blob.h, bottom_blob.w, shape_0, shape_1);
} else if (bottom_blob.h != shape_0 && bottom_blob.h != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n",
bottom_blob.h, bottom_blob.w, shape_0, shape_1);
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
(bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[i];
}
}
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
(bottom_blob.h == 1)) {
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob.row(0)[i];
}
}
} else if ((bottom_blob.w == 1) &&
(bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(shape_1, bottom_blob.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[0];
}
}
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob.row(0)[0];
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 2 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n",
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n",
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == 1)) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[i];
}
}
}
} else if ((bottom_blob.w == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1)) {
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[0];
}
}
}
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 3 && shape_blob.w == 1) {
int shape_0 = (int)(shape_blob[0] + 0.5);
if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (1, 1, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0);
} else if (bottom_blob.w == shape_0 || shape_0 == 1) {
top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i];
}
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_0, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_0; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 3 && shape_blob.w == 2) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (1, %d, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1);
} else if (bottom_blob.h != shape_0 && bottom_blob.h != 1 && shape_0 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (1, %d, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1);
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
(bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
(bottom_blob.h == 1)) {
top_blob.create(bottom_blob.w, shape_0, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[i];
}
}
}
} else if ((bottom_blob.w == 1) &&
(bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(shape_1, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0];
}
}
}
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
top_blob.create(shape_1, shape_0, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 3 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1,
shape_2);
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1,
shape_2);
} else if (bottom_blob.c != shape_0 && bottom_blob.c != 1 && shape_0 != 1) {
fprintf(stderr,
"The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n",
bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1,
shape_2);
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, shape_1, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == 1) && (bottom_blob.c == 1)) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[i];
}
}
}
} else if (bottom_blob.w == 1 &&
(bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(shape_2, bottom_blob.h, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0];
}
}
}
} else if (bottom_blob.w == 1 &&
(bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == 1)) {
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[0];
}
}
}
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(shape_2, shape_1, bottom_blob.c, elemsize,
opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[0];
}
}
}
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 && bottom_blob.c == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
fprintf(stderr, "top_blob.shape: (%d %d %d)\n", top_blob.c, top_blob.h,
top_blob.w);
}
} // namespace mmlab