196 lines
5.8 KiB
C++
196 lines
5.8 KiB
C++
#include "trt_scatternd.hpp"
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include <chrono>
|
|
|
|
#include "trt_scatternd_kernel.hpp"
|
|
#include "trt_serialize.hpp"
|
|
|
|
namespace {
|
|
static const char *PLUGIN_VERSION{"1"};
|
|
static const char *PLUGIN_NAME{"ScatterND"};
|
|
} // namespace
|
|
|
|
ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string &name)
|
|
: mLayerName(name) {}
|
|
|
|
ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string name,
|
|
const void *data, size_t length)
|
|
: mLayerName(name) {}
|
|
|
|
nvinfer1::IPluginV2DynamicExt *ONNXScatterNDDynamic::clone() const {
|
|
ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(mLayerName);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::DimsExprs ONNXScatterNDDynamic::getOutputDimensions(
|
|
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
|
|
nvinfer1::IExprBuilder &exprBuilder) {
|
|
return inputs[0];
|
|
}
|
|
|
|
bool ONNXScatterNDDynamic::supportsFormatCombination(
|
|
int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
|
|
int nbOutputs) {
|
|
if (pos < nbInputs) {
|
|
switch (pos) {
|
|
case 0:
|
|
// data
|
|
return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
|
|
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR) ||
|
|
(inOut[pos].type == nvinfer1::DataType::kINT32 &&
|
|
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
|
|
case 1:
|
|
// indices
|
|
return inOut[pos].type == nvinfer1::DataType::kINT32 &&
|
|
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
|
|
case 2:
|
|
// updates
|
|
return inOut[pos].type == inOut[0].type &&
|
|
inOut[pos].format == inOut[0].format;
|
|
default:
|
|
return true;
|
|
}
|
|
} else {
|
|
switch (pos - nbInputs) {
|
|
case 0:
|
|
// output
|
|
return inOut[pos].type == inOut[0].type &&
|
|
inOut[pos].format == inOut[0].format;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ONNXScatterNDDynamic::configurePlugin(
|
|
const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
|
|
|
|
size_t ONNXScatterNDDynamic::getWorkspaceSize(
|
|
const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
|
|
const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
|
|
return 0;
|
|
}
|
|
|
|
int ONNXScatterNDDynamic::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
|
|
const nvinfer1::PluginTensorDesc *outputDesc,
|
|
const void *const *inputs,
|
|
void *const *outputs, void *workSpace,
|
|
cudaStream_t stream) {
|
|
const int *dims = &(inputDesc[0].dims.d[0]);
|
|
const int *indices_dims = &(inputDesc[1].dims.d[0]);
|
|
int nbDims = inputDesc[0].dims.nbDims;
|
|
int indice_nbDims = inputDesc[1].dims.nbDims;
|
|
|
|
const void *data = inputs[0];
|
|
const void *indices = inputs[1];
|
|
const void *update = inputs[2];
|
|
void *output = outputs[0];
|
|
|
|
auto data_type = inputDesc[0].type;
|
|
|
|
switch (data_type) {
|
|
case nvinfer1::DataType::kFLOAT:
|
|
TRTONNXScatterNDKernelLauncher<float>(
|
|
(float *)data, (int *)indices, (float *)update, dims, nbDims,
|
|
indices_dims, indice_nbDims, (float *)output, stream);
|
|
break;
|
|
|
|
case nvinfer1::DataType::kINT32:
|
|
TRTONNXScatterNDKernelLauncher<int>(
|
|
(int *)data, (int *)indices, (int *)update, dims, nbDims,
|
|
indices_dims, indice_nbDims, (int *)output, stream);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
nvinfer1::DataType ONNXScatterNDDynamic::getOutputDataType(
|
|
int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
|
|
return inputTypes[0];
|
|
}
|
|
|
|
// IPluginV2 Methods
|
|
const char *ONNXScatterNDDynamic::getPluginType() const { return PLUGIN_NAME; }
|
|
|
|
const char *ONNXScatterNDDynamic::getPluginVersion() const {
|
|
return PLUGIN_VERSION;
|
|
}
|
|
|
|
int ONNXScatterNDDynamic::getNbOutputs() const { return 1; }
|
|
|
|
int ONNXScatterNDDynamic::initialize() { return 0; }
|
|
|
|
void ONNXScatterNDDynamic::terminate() {}
|
|
|
|
size_t ONNXScatterNDDynamic::getSerializationSize() const { return 0; }
|
|
|
|
void ONNXScatterNDDynamic::serialize(void *buffer) const {}
|
|
|
|
void ONNXScatterNDDynamic::destroy() {
|
|
// This gets called when the network containing plugin is destroyed
|
|
delete this;
|
|
}
|
|
|
|
void ONNXScatterNDDynamic::setPluginNamespace(const char *libNamespace) {
|
|
mNamespace = libNamespace;
|
|
}
|
|
|
|
const char *ONNXScatterNDDynamic::getPluginNamespace() const {
|
|
return mNamespace.c_str();
|
|
}
|
|
|
|
////////////////////// creator /////////////////////////////
|
|
|
|
ONNXScatterNDDynamicCreator::ONNXScatterNDDynamicCreator() {
|
|
mPluginAttributes.clear();
|
|
mFC.nbFields = mPluginAttributes.size();
|
|
mFC.fields = mPluginAttributes.data();
|
|
}
|
|
|
|
const char *ONNXScatterNDDynamicCreator::getPluginName() const {
|
|
return PLUGIN_NAME;
|
|
}
|
|
|
|
const char *ONNXScatterNDDynamicCreator::getPluginVersion() const {
|
|
return PLUGIN_VERSION;
|
|
}
|
|
|
|
const nvinfer1::PluginFieldCollection *
|
|
ONNXScatterNDDynamicCreator::getFieldNames() {
|
|
return &mFC;
|
|
}
|
|
|
|
nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::createPlugin(
|
|
const char *name, const nvinfer1::PluginFieldCollection *fc) {
|
|
ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(name);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::deserializePlugin(
|
|
const char *name, const void *serialData, size_t serialLength) {
|
|
auto plugin = new ONNXScatterNDDynamic(name, serialData, serialLength);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
return plugin;
|
|
}
|
|
|
|
void ONNXScatterNDDynamicCreator::setPluginNamespace(const char *libNamespace) {
|
|
mNamespace = libNamespace;
|
|
}
|
|
|
|
const char *ONNXScatterNDDynamicCreator::getPluginNamespace() const {
|
|
return mNamespace.c_str();
|
|
}
|
|
|
|
REGISTER_TENSORRT_PLUGIN(ONNXScatterNDDynamicCreator);
|