54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from mmengine import Config
|
|
|
|
from mmdeploy.codebase import import_codebase
|
|
from mmdeploy.utils import Backend, Codebase
|
|
from mmdeploy.utils.test import (WrapFunction, check_backend,
|
|
get_rewrite_outputs)
|
|
|
|
try:
|
|
import_codebase(Codebase.MMDET)
|
|
except ImportError:
|
|
pytest.skip(f'{Codebase.MMDET} is not installed.', allow_module_level=True)
|
|
|
|
|
|
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
|
|
def test_distance2bbox(backend_type: Backend):
|
|
check_backend(backend_type)
|
|
deploy_cfg = Config(
|
|
dict(
|
|
onnx_config=dict(output_names=None, input_shape=None),
|
|
backend_config=dict(type=backend_type.value, model_inputs=None),
|
|
codebase_config=dict(type='mmdet', task='ObjectDetection')))
|
|
|
|
# wrap function to enable rewrite
|
|
def distance2bbox(*args, **kwargs):
|
|
import mmdet.structures.bbox.transforms
|
|
return mmdet.structures.bbox.transforms.distance2bbox(*args, **kwargs)
|
|
|
|
points = torch.rand(3, 2)
|
|
distance = torch.rand(3, 4)
|
|
original_outputs = distance2bbox(points, distance)
|
|
|
|
# wrap function to nn.Module, enable torch.onnx.export
|
|
wrapped_func = WrapFunction(distance2bbox)
|
|
rewrite_outputs, is_backend_output = get_rewrite_outputs(
|
|
wrapped_func,
|
|
model_inputs={
|
|
'points': points,
|
|
'distance': distance
|
|
},
|
|
deploy_cfg=deploy_cfg)
|
|
|
|
if is_backend_output:
|
|
model_output = original_outputs.squeeze().cpu().numpy()
|
|
rewrite_output = rewrite_outputs[0].squeeze()
|
|
assert np.allclose(
|
|
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
|
|
else:
|
|
assert rewrite_outputs is not None
|