mmdeploy/csrc/codebase/mmcls/linear_cls.cpp
lzhangzz 640aa03538
Support Windows (#106)
* minor changes

* support windows

* fix GCC build

* fix lint

* reformat

* fix Windows build

* fix GCC build

* search backend ops for onnxruntime

* fix lint

* fix lint

* code clean-up

* code clean-up

* fix clang build

* fix trt support

* fix cmake for ncnn

* fix cmake for openvino

* fix SDK Python API

* handle ops for other backends (ncnn, trt)

* handle SDK Python API library location

* robustify linkage

* fix cuda

* minor fix for openvino & ncnn

* use CMAKE_CUDA_ARCHITECTURES if set

* fix cuda preprocessor

* fix misc

* fix pplnn & pplcv, drop support for pplcv<0.6.0

* robustify cmake

* update build.md (#2)

* build dynamic modules as module library & fix demo (partially)

* fix candidate path for mmdeploy_python

* move "enable CUDA" to cmake config for demo

* refine demo cmake

* add comment

* fix ubuntu build

* revert docs/en/build.md

* fix C API

* fix lint

* Windows build doc (#3)

* check in docs related to mmdeploy build on windows

* update build guide on windows platform

* update build guide on windows platform

* make path of thirdparty libraries consistent

* make path consistency

* correct build command for custom ops

* correct build command for sdk

* update sdk build instructions

* update doc

* correct build command

* fix lint

* correct build command and fix lint

Co-authored-by: lvhan <lvhan@pjlab.org>

* trailing whitespace (#4)

* minor fix

* fix sr sdk model

* fix type deduction

* fix cudaFree after driver shutting down

* update ppl.cv installation warning (#5)

* fix device allocator threshold & fix lint

* update doc (#6)

* update ppl.cv installation warning

* missing 'git clone'

Co-authored-by: chenxin <chenxin2@sensetime.com>
Co-authored-by: zhangli <zhangli@sensetime.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: lvhan <lvhan@pjlab.org>
2022-02-24 20:08:44 +08:00

72 lines
2.1 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <algorithm>
#include <numeric>
#include "codebase/mmcls/mmcls.h"
#include "core/tensor.h"
#include "core/utils/device_utils.h"
#include "core/utils/formatter.h"
#include "experimental/module_adapter.h"
using std::vector;
namespace mmdeploy::mmcls {
class LinearClsHead : public MMClassification {
public:
explicit LinearClsHead(const Value& cfg) : MMClassification(cfg) {
if (cfg.contains("params")) {
topk_ = cfg["params"].value("topk", 1);
if (topk_ <= 0) {
MMDEPLOY_ERROR("'topk' should be greater than 0, but got '{}'", topk_);
throw_exception(eInvalidArgument);
}
}
}
Result<Value> operator()(const Value& infer_res) {
MMDEPLOY_DEBUG("infer_res: {}", infer_res);
auto output = infer_res["output"].get<Tensor>();
if (!(output.shape().size() >= 2 && output.data_type() == DataType::kFLOAT)) {
MMDEPLOY_ERROR("unsupported `output` tensor, shape: {}, dtype: {}", output.shape(),
(int)output.data_type());
return Status(eNotSupported);
}
auto class_num = (int)output.shape(1);
OUTCOME_TRY(auto _scores, MakeAvailableOnDevice(output, kHost, stream()));
OUTCOME_TRY(stream().Wait());
return GetLabels(_scores, class_num);
}
private:
Value GetLabels(const Tensor& scores, int class_num) const {
auto scores_data = scores.data<float>();
ClassifyOutput output;
output.labels.reserve(topk_);
std::vector<int> idx(class_num);
iota(begin(idx), end(idx), 0);
partial_sort(begin(idx), begin(idx) + topk_, end(idx),
[&](int i, int j) { return scores_data[i] > scores_data[j]; });
for (int i = 0; i < topk_; ++i) {
auto label = ClassifyOutput::Label{idx[i], scores_data[idx[i]]};
MMDEPLOY_DEBUG("label_id: {}, score: {}", label.label_id, label.score);
output.labels.push_back(label);
}
return to_value(std::move(output));
}
private:
static constexpr const auto kHost = Device{0};
int topk_{1};
};
REGISTER_CODEBASE_COMPONENT(MMClassification, LinearClsHead);
} // namespace mmdeploy::mmcls