mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* minor changes * support windows * fix GCC build * fix lint * reformat * fix Windows build * fix GCC build * search backend ops for onnxruntime * fix lint * fix lint * code clean-up * code clean-up * fix clang build * fix trt support * fix cmake for ncnn * fix cmake for openvino * fix SDK Python API * handle ops for other backends (ncnn, trt) * handle SDK Python API library location * robustify linkage * fix cuda * minor fix for openvino & ncnn * use CMAKE_CUDA_ARCHITECTURES if set * fix cuda preprocessor * fix misc * fix pplnn & pplcv, drop support for pplcv<0.6.0 * robustify cmake * update build.md (#2) * build dynamic modules as module library & fix demo (partially) * fix candidate path for mmdeploy_python * move "enable CUDA" to cmake config for demo * refine demo cmake * add comment * fix ubuntu build * revert docs/en/build.md * fix C API * fix lint * Windows build doc (#3) * check in docs related to mmdeploy build on windows * update build guide on windows platform * update build guide on windows platform * make path of thirdparty libraries consistent * make path consistency * correct build command for custom ops * correct build command for sdk * update sdk build instructions * update doc * correct build command * fix lint * correct build command and fix lint Co-authored-by: lvhan <lvhan@pjlab.org> * trailing whitespace (#4) * minor fix * fix sr sdk model * fix type deduction * fix cudaFree after driver shutting down * update ppl.cv installation warning (#5) * fix device allocator threshold & fix lint * update doc (#6) * update ppl.cv installation warning * missing 'git clone' Co-authored-by: chenxin <chenxin2@sensetime.com> Co-authored-by: zhangli <zhangli@sensetime.com> Co-authored-by: lvhan028 <lvhan_028@163.com> Co-authored-by: lvhan <lvhan@pjlab.org>
189 lines
5.4 KiB
C++
189 lines
5.4 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "tensor.h"
|
|
|
|
#include <numeric>
|
|
#include <sstream>
|
|
|
|
#include "core/utils/formatter.h"
|
|
#include "logger.h"
|
|
using std::stringstream;
|
|
|
|
namespace mmdeploy {
|
|
|
|
static inline int64_t element_size(DataType data_type) {
|
|
switch (data_type) {
|
|
case DataType::kFLOAT:
|
|
return 4;
|
|
case DataType::kHALF:
|
|
return 2;
|
|
case DataType::kINT8:
|
|
return 1;
|
|
case DataType::kINT32:
|
|
return 4;
|
|
case DataType::kINT64:
|
|
return 8;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
inline static std::string shape_string(const TensorShape& shape) {
|
|
if (shape.empty()) {
|
|
return "0";
|
|
}
|
|
stringstream ss;
|
|
ss << shape[0];
|
|
for (size_t i = 1; i < shape.size(); ++i) ss << "," << shape[i];
|
|
return ss.str();
|
|
}
|
|
|
|
Tensor::Tensor(const TensorDesc& desc, Allocator allocator)
|
|
: desc_(desc), allocator_(std::move(allocator)) {
|
|
buffer_ = Buffer(desc.device, byte_size(), allocator_);
|
|
}
|
|
|
|
Tensor::Tensor(const TensorDesc& desc, Buffer buffer) // NOLINT
|
|
: desc_(desc), buffer_(std::move(buffer)) {}
|
|
|
|
Tensor::Tensor(const TensorDesc& desc, std::shared_ptr<void> data) {
|
|
desc_ = desc;
|
|
buffer_ = Buffer(desc.device, byte_size(), std::move(data));
|
|
}
|
|
|
|
static inline int64_t get_size(const std::vector<int64_t>& shape) {
|
|
if (shape.empty()) {
|
|
return 0;
|
|
}
|
|
auto _size = std::accumulate(begin(shape), end(shape), 1LL, std::multiplies<>());
|
|
return std::max(0LL, _size);
|
|
}
|
|
|
|
int64_t Tensor::size() const { return get_size(shape()); }
|
|
|
|
int64_t Tensor::byte_size() const { return size() * element_size(data_type()); }
|
|
const TensorDesc& Tensor::desc() const { return desc_; }
|
|
const TensorShape& Tensor::shape() const { return desc_.shape; }
|
|
DataType Tensor::data_type() const { return desc_.data_type; }
|
|
const char* Tensor::name() const { return desc_.name.c_str(); }
|
|
const Buffer& Tensor::buffer() const { return buffer_; }
|
|
|
|
Buffer& Tensor::buffer() {
|
|
Allocate();
|
|
return buffer_;
|
|
}
|
|
|
|
Device Tensor::device() const { return desc_.device; }
|
|
|
|
void Tensor::Reshape(const TensorShape& shape) {
|
|
bool is_same_size = size() == get_size(shape);
|
|
desc_.shape = shape;
|
|
if (buffer_ && !is_same_size) {
|
|
// re-allocate buffer
|
|
buffer_ = {};
|
|
Allocate();
|
|
}
|
|
}
|
|
|
|
Result<void> Tensor::CopyFrom(const Tensor& tensor, Stream stream) {
|
|
if (desc_.shape.empty() || tensor.desc().shape.empty()) {
|
|
MMDEPLOY_ERROR("uninitialized tensor");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (!(desc_.shape == tensor.desc().shape)) {
|
|
MMDEPLOY_ERROR("mismatched shape {} vs {}", shape_string(desc_.shape),
|
|
shape_string(tensor.desc().shape));
|
|
return Status(eShapeMismatch);
|
|
}
|
|
if (desc_.data_type != tensor.desc().data_type) {
|
|
MMDEPLOY_ERROR("mismatched data type {} vs {}", desc_.data_type, tensor.desc().data_type);
|
|
return Status(eShapeMismatch);
|
|
}
|
|
Allocate();
|
|
if (!stream) {
|
|
auto device = desc_.device.is_device() ? desc_.device : tensor.desc().device;
|
|
auto default_stream = Stream::GetDefault(device);
|
|
OUTCOME_TRY(default_stream.Copy(tensor.buffer(), buffer_));
|
|
} else {
|
|
OUTCOME_TRY(stream.Copy(tensor.buffer(), buffer_));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
Result<void> Tensor::CopyTo(Tensor& tensor, Stream stream) const {
|
|
if (desc_.shape.empty() || tensor.desc().shape.empty()) {
|
|
MMDEPLOY_ERROR("uninitialized tensor");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
|
|
if (!(desc_.shape == tensor.desc().shape)) {
|
|
MMDEPLOY_ERROR("mismatched shape {} vs {}", shape_string(desc_.shape),
|
|
shape_string(tensor.desc().shape));
|
|
return Status(eShapeMismatch);
|
|
}
|
|
if (desc_.data_type != tensor.desc().data_type) {
|
|
MMDEPLOY_ERROR("mismatched data type {} vs {}", desc_.data_type, tensor.desc().data_type);
|
|
return Status(eShapeMismatch);
|
|
}
|
|
tensor.Allocate();
|
|
if (!stream) {
|
|
Device device = desc_.device.is_device() ? desc_.device : tensor.desc().device;
|
|
Stream default_stream = Stream::GetDefault(device);
|
|
return default_stream.Copy(buffer_, tensor.buffer());
|
|
} else {
|
|
return stream.Copy(buffer_, tensor.buffer());
|
|
}
|
|
}
|
|
|
|
Result<void> Tensor::CopyFrom(void* host_ptr, Stream stream) {
|
|
if (nullptr == host_ptr) {
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (desc_.shape.empty()) {
|
|
MMDEPLOY_ERROR("uninitialized tensor");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
Allocate();
|
|
if (!stream) {
|
|
auto default_stream = Stream::GetDefault(desc_.device);
|
|
return default_stream.Copy(host_ptr, buffer_, buffer_.GetSize());
|
|
} else {
|
|
return stream.Copy(host_ptr, buffer_, buffer_.GetSize());
|
|
}
|
|
}
|
|
|
|
Result<void> Tensor::CopyTo(void* host_ptr, Stream stream) const {
|
|
if (nullptr == host_ptr) {
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (desc_.shape.empty()) {
|
|
MMDEPLOY_ERROR("uninitialized tensor");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (!stream) {
|
|
auto default_stream = Stream::GetDefault(desc_.device);
|
|
return default_stream.Copy(buffer_, host_ptr, buffer_.GetSize());
|
|
} else {
|
|
return stream.Copy(buffer_, host_ptr, buffer_.GetSize());
|
|
}
|
|
}
|
|
|
|
void Tensor::Allocate() {
|
|
if (!buffer_) {
|
|
auto _desc = desc();
|
|
*this = Tensor(_desc, allocator_);
|
|
}
|
|
}
|
|
|
|
Tensor Tensor::Slice(int index) {
|
|
Tensor slice = *this;
|
|
slice.desc_.shape[0] = 1;
|
|
auto bytes = element_size(desc_.data_type) * get_size(slice.desc_.shape);
|
|
slice.buffer_ = Buffer(buffer(), index * bytes, bytes);
|
|
return slice;
|
|
}
|
|
|
|
TensorShape::value_type Tensor::shape(int dim) const { return desc().shape[dim]; }
|
|
|
|
} // namespace mmdeploy
|