mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
59 lines
1.7 KiB
C++
59 lines
1.7 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#ifndef MMDEPLOY_SRC_NET_PPL_PPL_NET_H_
|
|
#define MMDEPLOY_SRC_NET_PPL_PPL_NET_H_
|
|
|
|
#include "core/mpl/span.h"
|
|
#include "core/net.h"
|
|
#include "ppl/nn/engines/engine.h"
|
|
#include "ppl/nn/runtime/runtime.h"
|
|
|
|
namespace mmdeploy {
|
|
|
|
using PPLTensor = ppl::nn::Tensor;
|
|
|
|
class PPLNet : public Net {
|
|
public:
|
|
~PPLNet() override;
|
|
|
|
Result<void> Init(const Value& args) override;
|
|
|
|
Result<void> Deinit() override;
|
|
|
|
Result<void> Reshape(Span<TensorShape> input_shapes) override;
|
|
|
|
Result<Span<Tensor> > GetInputTensors() override;
|
|
|
|
Result<Span<Tensor> > GetOutputTensors() override;
|
|
|
|
Result<void> Forward() override;
|
|
|
|
Result<void> ForwardAsync(Event* event) override;
|
|
|
|
static Result<std::vector<TensorShape> > InferOutputShapes(Span<TensorShape> input_shapes,
|
|
Span<TensorShape> prev_in_shapes,
|
|
Span<TensorShape> prev_out_shapes);
|
|
|
|
private:
|
|
static Tensor CreateInternalTensor(ppl::nn::Tensor* src, Device device);
|
|
|
|
static Result<int64_t> GetBatchSize(Span<TensorShape> shapes);
|
|
|
|
static std::vector<TensorShape> GetShapes(Span<Tensor> tensors);
|
|
|
|
Device device_;
|
|
Stream stream_;
|
|
std::vector<std::unique_ptr<ppl::nn::Engine> > engines_;
|
|
std::vector<Tensor> inputs_external_;
|
|
std::vector<Tensor> outputs_external_;
|
|
std::vector<PPLTensor*> inputs_internal_;
|
|
std::vector<PPLTensor*> outputs_internal_;
|
|
std::unique_ptr<ppl::nn::Runtime> runtime_;
|
|
bool can_infer_output_shapes_{false};
|
|
static constexpr const auto kHost = Device(0);
|
|
};
|
|
|
|
} // namespace mmdeploy
|
|
|
|
#endif // MMDEPLOY_SRC_NET_PPL_PPL_NET_H_
|