mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
41 lines
1.5 KiB
Plaintext
41 lines
1.5 KiB
Plaintext
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include <cstdint>
|
|
|
|
namespace mmdeploy {
|
|
namespace cuda {
|
|
|
|
template <typename T>
|
|
__global__ void transpose(const T* src, int height, int width, int channels, int src_width_stride,
|
|
T* dst, int dst_channel_stride) {
|
|
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (x >= width || y >= height) return;
|
|
|
|
for (auto c = 0; c < channels; ++c) {
|
|
dst[c * dst_channel_stride + y * width + x] = src[y * src_width_stride + x * channels + c];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Transpose(const T* src, int height, int width, int channels, T* dst, cudaStream_t stream) {
|
|
const dim3 thread_block(32, 8);
|
|
const dim3 block_num((width + thread_block.x - 1) / thread_block.x,
|
|
(height + thread_block.y - 1) / thread_block.y);
|
|
|
|
auto src_width_stride = width * channels;
|
|
auto dst_channel_stride = width * height;
|
|
|
|
transpose<T><<<block_num, thread_block, 0, stream>>>(src, height, width, channels,
|
|
src_width_stride, dst, dst_channel_stride);
|
|
}
|
|
|
|
template void Transpose<uint8_t>(const uint8_t* src, int height, int width, int channels,
|
|
uint8_t* dst, cudaStream_t stream);
|
|
|
|
template void Transpose<float>(const float* src, int height, int width, int channels, float* dst,
|
|
cudaStream_t stream);
|
|
} // namespace cuda
|
|
} // namespace mmdeploy
|