mmdeploy/tests/test_codebase/test_mmedit/test_super_resolution.py

122 lines
3.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
from tempfile import NamedTemporaryFile
import mmcv
import numpy as np
import pytest
import torch
import mmdeploy.apis.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import SwitchBackendWrapper
import_codebase(Codebase.MMEDIT)
model_cfg = 'tests/test_codebase/test_mmedit/data/model.py'
model_cfg = load_config(model_cfg)[0]
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmedit', task='SuperResolution'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
input_img = np.random.rand(32, 32, 3)
img_shape = [32, 32]
input = {'lq': input_img}
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
def test_init_pytorch_model():
torch_model = task_processor.init_pytorch_model(None)
assert torch_model is not None
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(3, 50, 50),
})
yield task_processor.init_backend_model([''])
wrapper.recover()
def test_init_backend_model(backend_model):
assert backend_model is not None
def test_create_input():
inputs = task_processor.create_input(input_img, img_shape=img_shape)
assert inputs is not None
def test_visualize(backend_model):
result = task_processor.run_inference(backend_model, input)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, input_img, result[0], filename,
'onnxruntime')
assert os.path.exists(filename)
def test_run_inference(backend_model):
results = task_processor.run_inference(backend_model, input)
assert results is not None
def test_get_tensor_from_input():
assert type(task_processor.get_tensor_from_input(input)) is not dict
def test_get_partition_cfg():
with pytest.raises(NotImplementedError):
task_processor.get_partition_cfg(None)
def test_build_dataset():
data = dict(
test={
'type': 'SRFolderDataset',
'lq_folder': 'tests/test_codebase/test_mmedit/data/imgs',
'gt_folder': 'tests/test_codebase/test_mmedit/data/imgs',
'scale': 1,
'filename_tmpl': '{}',
'pipeline': [
{
'type': 'LoadImageFromFile'
},
]
})
dataset_cfg = mmcv.Config(dict(data=data))
dataset = task_processor.build_dataset(
dataset_cfg=dataset_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
def test_single_gpu_test(backend_model):
from mmcv.parallel import MMDataParallel
dataset = task_processor.build_dataset(model_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
backend_model = MMDataParallel(backend_model, device_ids=[0])
outputs = task_processor.single_gpu_test(backend_model, dataloader)
assert outputs is not None, 'Failed to test model'