mmdeploy/tests/test_csrc/preprocess/test_normalize.cpp

104 lines
3.2 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "catch.hpp"
#include "mmdeploy/core/mat.h"
#include "mmdeploy/core/utils/device_utils.h"
#include "mmdeploy/preprocess/transform/transform.h"
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv_utils.h"
#include "test_resource.h"
#include "test_utils.h"
using namespace mmdeploy;
using namespace mmdeploy::test;
using namespace std;
void TestNormalize(const Value &cfg, const cv::Mat &mat) {
auto gResource = MMDeployTestResources::Get();
for (auto const &device_name : gResource.device_names()) {
Device device{device_name.c_str()};
Stream stream{device};
auto transform = CreateTransform(cfg, device, stream);
REQUIRE(transform != nullptr);
vector<float> mean;
vector<float> std;
for (auto &v : cfg["mean"]) {
mean.push_back(v.get<float>());
}
for (auto &v : cfg["std"]) {
std.push_back(v.get<float>());
}
bool to_rgb = cfg.value("to_rgb", false);
auto _mat = mat.clone();
auto ref_mat = mmdeploy::cpu::Normalize(_mat, mean, std, to_rgb);
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
REQUIRE(!res.has_error());
auto res_tensor = res.value()["img"].get<Tensor>();
REQUIRE(res_tensor.device() == device);
REQUIRE(res_tensor.desc().data_type == DataType::kFLOAT);
REQUIRE(ImageNormCfg(res.value(), "mean") == mean);
REQUIRE(ImageNormCfg(res.value(), "std") == std);
Device kHost{"cpu"};
auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream);
REQUIRE(stream.Wait());
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
}
}
TEST_CASE("transform Normalize", "[normalize]") {
auto gResource = MMDeployTestResources::Get();
auto img_list = gResource.LocateImageResources("transform");
REQUIRE(!img_list.empty());
auto img_path = img_list.front();
cv::Mat bgr_mat = cv::imread(img_path);
cv::Mat gray_mat;
cv::Mat float_bgr_mat;
cv::Mat float_gray_mat;
cv::cvtColor(bgr_mat, gray_mat, cv::COLOR_BGR2GRAY);
bgr_mat.convertTo(float_bgr_mat, CV_32FC3);
gray_mat.convertTo(float_gray_mat, CV_32FC1);
SECTION("cpu vs gpu: 3 channel mat") {
bool to_rgb = true;
Value cfg{{"type", "Normalize"},
{"mean", {123.675, 116.28, 103.53}},
{"std", {58.395, 57.12, 57.375}},
{"to_rgb", to_rgb}};
vector<cv::Mat> mats{bgr_mat, float_bgr_mat};
for (auto &mat : mats) {
TestNormalize(cfg, mat);
}
}
SECTION("cpu vs gpu: 3 channel mat, to_rgb false") {
bool to_rgb = false;
Value cfg{{"type", "Normalize"},
{"mean", {123.675, 116.28, 103.53}},
{"std", {58.395, 57.12, 57.375}},
{"to_rgb", to_rgb}};
vector<cv::Mat> mats{bgr_mat, float_bgr_mat};
for (auto &mat : mats) {
TestNormalize(cfg, mat);
}
}
SECTION("cpu vs gpu: 1 channel mat") {
bool to_rgb = true;
Value cfg{{"type", "Normalize"}, {"mean", {123.675}}, {"std", {58.395}}, {"to_rgb", to_rgb}};
vector<cv::Mat> mats{gray_mat, float_gray_mat};
for (auto &mat : mats) {
TestNormalize(cfg, mat);
}
}
}