hanrui1sensetime e05521c933
[Feature] Merge NCNN deployment to grimoire based on mmcls - revert [#25](https://github.com/grimoire/deploy_prototype/pull/25) (#30)
* add

* change VulkanSDK to 1.2.176.1

* add ncnn cmakelist

* add ncnn source code as third party

* add all ncnn

* ncnn compile passed

* onnx2ncnn correctly

* fix code style

* merge_as_grimoire_design, only backend_ops, manually register.

* remove data and test sh

* remove build example

* remove config ncnn

* remove onnx2ncnn intermediate files

* remove other files auto-generated

* remove vulkan tools

* remove Vulkan, gitignore new rules, __init__ new lines

* rollback __init__ to grimoire

* remove pytorch version pending

* grimoire comments reply 1, 3, 4

* reply comment 5,6,7

* add auto definer, add python register

* fix lint

* add ncnn deploy support

* add model_wrapper, fix a typo bug, and add code comment for onnx2ncnn(WIP)

* add model wrapper ncnn

* fix lint

* fix pep8

* fix pre-commit-config.yaml paths

* fix import

* fix lint

* remove sys.path.append

* remove sys

* isort fix

* fix double quoted

* fix trailing space

* try fix isort

* fix clang-format-9

* fix requests

* fix all comments

* Fix typo

* test code for grimoire

* fix ops register

* new definere

* fix visualization of mmcls

* remove temp

* fix flake8

* fix seed-isort-config

* fix thirdparty

* fix thirdparty

* fix yapf

* fix third_party_sort

* fix third party

* fix clang-format

* try fix clang-format

* try to fix clang format 9 customreshape

* try fix clang-format-9

* try fix clang-format-9

* try fix clang-format-9

* try fix ext

* fix onnx2ncnn

* Fix comments

* Fix Comments

* Fix Comments

* Fix Comments

* Fix conflict

* Fix flake8

* Update .isort.cfg

* Update ncnn_ext.cpp

* Update ncnn_ext.cpp

* fix missing ncnn backend code

* delete out of date comments of gather.cpp

* add DeployBaseClassifier

* add return -100 error

* clear out-of-date to do comments

Co-authored-by: 韩睿 <SENSETIME\hanrui1@cn0614008774l.domain.sensetime.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: grimoire <streetyao@live.com>
2021-08-05 14:06:47 +08:00

247 lines
6.6 KiB
C++

#include "gather.h"
#include "../ncnn_ops_definer.h"
namespace mmlab {
using namespace ncnn;
DEFINE_LAYER_CREATOR(Gather)
DEFINE_NCNN_OPS(Gather, Gather)
Gather::Gather() {
one_blob_only = false;
support_inplace = false;
}
int Gather::load_param(const ParamDict &pd) {
axis = pd.get(0, 0);
return 0;
}
int Gather::forward(const std::vector<Mat> &bottom_blobs,
std::vector<Mat> &top_blobs, const Option &opt) const {
const Mat &bottom_blob = bottom_blobs[0];
const Mat &indices = bottom_blobs[1];
int dims = bottom_blob.dims;
int indices_dims = indices.dims;
size_t elemsize = bottom_blob.elemsize;
int positive_axis = axis < 0 ? dims + axis : axis;
Mat &top_blob = top_blobs[0];
const float *indices_ptr = indices;
if (dims == 1 && indices_dims == 1) // positive_axis == 0
{
int w = indices.w;
top_blob.create(w, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
float *outptr = top_blob;
for (int i = 0; i < w; i++) {
float indice = indices_ptr[i];
outptr[i] = ptr[(int)(indice + 0.5)];
}
return 0;
}
if (dims == 1 && indices_dims == 2) // positive_axis == 0
{
int w = indices.w;
int h = indices.h;
top_blob.create(w, h, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
float *outptr = top_blob;
for (int j = 0; j < h; j++) {
for (int i = 0; i < w; i++) {
int indice = (int)(indices_ptr[j * w + i] + 0.5);
outptr[j * w + i] = ptr[indice];
}
}
return 0;
}
if (dims == 1 && indices_dims == 3) // positive_axis == 0
{
int c = indices.c;
int w = indices.w;
int h = indices.h;
top_blob.create(c, w, h, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
for (int page = 0; page < c; page++) {
indices_ptr = indices.channel(page);
float *outptr = top_blob.channel(page);
for (int j = 0; j < h; j++) {
for (int i = 0; i < w; i++) {
int indice = (int)(indices_ptr[j * w + i] + 0.5);
outptr[j * w + i] = ptr[indice];
}
}
}
return 0;
}
if (dims == 2 && positive_axis == 0 && indices_dims == 1) {
int w = bottom_blob.w;
int h = bottom_blob.h;
top_blob.create(w, indices.w, elemsize, opt.blob_allocator);
// w -> w
// h -> indices.w
// h * w -> indices.w * w
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
float *outptr = top_blob;
for (int i = 0; i < indices.w; i++) {
for (int j = 0; j < w; j++) {
int selected = (float)(indices_ptr[i] + 0.5);
outptr[i * w + j] = ptr[selected * w + j];
}
}
return 0;
}
if (dims == 2 && positive_axis == 1 && indices_dims == 1) {
int w = bottom_blob.w;
int h = bottom_blob.h;
top_blob.create(h, indices.w, elemsize, opt.blob_allocator);
// w -> h
// h -> indices.w
// h * w -> indices.w * h
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
float *outptr = top_blob;
for (int i = 0; i < indices.w; i++) {
for (int j = 0; j < h; j++) {
int selected = (int)(indices_ptr[i] + 0.5);
outptr[i * h + j] = ptr[j * w + selected];
}
}
return 0;
}
if (dims == 2 && positive_axis == 0 && indices_dims == 2) {
int w = bottom_blob.w;
int h = bottom_blob.h;
top_blob.create(w, indices.w, indices.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
for (int k = 0; k < indices.h; k++) {
float *outptr = top_blob.channel(k);
for (int i = 0; i < indices.w; i++) {
for (int j = 0; j < w; j++) {
int selected = (float)(indices_ptr[k * indices.w + i] + 0.5);
outptr[i * w + j] = ptr[selected * w + j];
}
}
}
return 0;
}
if (dims == 2 && positive_axis == 1 && indices_dims == 2) {
int w = bottom_blob.w;
int h = bottom_blob.h;
top_blob.create(h, indices.w, indices.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
const float *ptr = bottom_blob;
for (int k = 0; k < indices.h; k++) {
float *outptr = top_blob.channel(k);
for (int i = 0; i < indices.w; i++) {
for (int j = 0; j < h; j++) {
int selected = (int)(indices_ptr[k * indices.w + i] + 0.5);
outptr[i * h + j] = ptr[j * w + selected];
}
}
}
return 0;
}
if (dims == 3 && positive_axis == 0 && indices_dims == 1) {
int w = bottom_blob.w;
int h = bottom_blob.h;
int channels = bottom_blob.c;
top_blob.create(w, h, indices.w, elemsize, opt.blob_allocator);
if (top_blob.empty()) {
return -100;
}
for (int i = 0; i < indices.w; i++) {
int selected = (int)(indices_ptr[i] + 0.5);
const unsigned char *ptr = bottom_blob.channel(selected);
unsigned char *outptr = top_blob.channel(i);
memcpy(outptr, ptr, w * h * elemsize);
}
return 0;
}
if (dims == 3 && positive_axis == 1 && indices_dims == 1) {
int w = bottom_blob.w;
int h = bottom_blob.h;
int channels = bottom_blob.c;
top_blob.create(w, channels, indices.w, elemsize, opt.blob_allocator);
#pragma omp parallel for num_threads(opt.num_threads)
// use parallel programming
for (int i = 0; i < indices.w; i++) {
int selected = (int)(indices_ptr[i] + 0.5);
float *outptr = top_blob.channel(i);
for (int j = 0; j < channels; j++) {
const float *ptr = bottom_blob.channel(j);
for (int k = 0; k < w; k++) {
outptr[j * w + k] = ptr[selected * w + k];
}
}
}
return 0;
}
if (dims == 3 && positive_axis == 2 && indices_dims == 1) {
fprintf(stderr, "gather: dim = 3\n");
int w = bottom_blob.w;
int h = bottom_blob.h;
int channels = bottom_blob.c;
top_blob.create(h, channels, indices.w, elemsize, opt.blob_allocator);
#pragma omp parallel for num_threads(opt.num_threads)
// use parallel programming
for (int i = 0; i < indices.w; i++) {
int selected = (int)(indices_ptr[i] + 0.5);
float *outptr = top_blob.channel(i);
for (int j = 0; j < channels; j++) {
const float *ptr = bottom_blob.channel(j);
for (int k = 0; k < h; k++) {
outptr[j * h + k] = ptr[k * w + selected];
}
}
}
fprintf(stderr, "top_blob.size: (%d %d %d)\n", top_blob.c, top_blob.h,
top_blob.w);
return 0;
}
return 0;
}
} // namespace mmlab