mmdeploy/tests/test_codebase/test_mmcls/test_classification.py

163 lines
5.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import Any
import numpy as np
import pytest
import torch
from mmengine import Config
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper
try:
import_codebase(Codebase.MMCLS)
except ImportError:
pytest.skip(f'{Codebase.MMCLS} is not installed.', allow_module_level=True)
model_cfg_path = 'tests/test_codebase/test_mmcls/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmcls', task='Classification'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = None
img_shape = (64, 64)
num_classes = 1000
img = np.random.rand(*img_shape, 3)
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
@pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0])
def test_build_pytorch_model(from_mmrazor: Any):
from mmcls.models.classifiers.base import BaseClassifier
if from_mmrazor is False:
_task_processor = task_processor
else:
_model_cfg_path = 'tests/test_codebase/test_mmcls/data/' \
'mmrazor_model.py'
_model_cfg = load_config(_model_cfg_path)[0]
_model_cfg.algorithm.architecture.model.type = 'mmcls.ImageClassifier'
_model_cfg.algorithm.architecture.model.backbone = dict(
type='SearchableShuffleNetV2', widen_factor=1.0)
_deploy_cfg = copy.deepcopy(deploy_cfg)
_deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor
_task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu')
if not isinstance(from_mmrazor, bool):
with pytest.raises(
TypeError,
match='`from_mmrazor` attribute must be '
'boolean type! '
f'but got: {from_mmrazor}'):
_ = _task_processor.from_mmrazor
return
assert from_mmrazor == _task_processor.from_mmrazor
if from_mmrazor:
pytest.importorskip('mmrazor', reason='mmrazor is not installed.')
model = _task_processor.build_pytorch_model(None)
assert isinstance(model, BaseClassifier)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, num_classes),
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
inputs = task_processor.create_input(img, input_shape=img_shape)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = backend_model.test_step(input_dict)[0]
with TemporaryDirectory() as dir:
filename = dir + '/tmp.jpg'
task_processor.visualize(img, results, filename, 'window')
assert os.path.exists(filename)
def test_get_tensor_from_input():
input_data = {'inputs': torch.ones(3, 4, 5)}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, torch.ones(3, 4, 5))
def test_get_partition_cfg():
try:
_ = task_processor.get_partition_cfg(partition_type='')
except NotImplementedError:
pass
def test_build_dataset_and_dataloader():
from torch.utils.data import DataLoader, Dataset
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg.test_dataloader.dataset)
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader_cfg = task_processor.model_cfg.test_dataloader
dataloader = task_processor.build_dataloader(dataloader_cfg)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_build_test_runner():
# Prepare dummy model
from mmcls.structures import ClsDataSample
from mmengine.structures import LabelData
label = LabelData(
label=torch.tensor([0]),
score=torch.rand(10),
metainfo=dict(num_classes=10))
outputs = [
ClsDataSample(
pred_label=label,
_pred_label=label,
gt_label=label,
_gt_label=label,
metainfo=dict(
img_shape=(224, 224),
img_path='',
ori_shape=(300, 400),
scale_factor=(0.8525, 0.8533333333333334)))
]
model = DummyModel(outputs=outputs)
assert model is not None
# Run test
with TemporaryDirectory() as dir:
runner = task_processor.build_test_runner(model, dir)
runner.test()