149 lines
4.5 KiB
Python
149 lines
4.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from mmengine import Config
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.dataset import Dataset
|
|
|
|
import mmdeploy.apis.onnxruntime as ort_apis
|
|
from mmdeploy.apis import build_task_processor
|
|
from mmdeploy.codebase import import_codebase
|
|
from mmdeploy.core.rewriters.rewriter_manager import RewriterContext
|
|
from mmdeploy.utils import Codebase, load_config
|
|
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper, WrapFunction
|
|
|
|
try:
|
|
import_codebase(Codebase.MMEDIT)
|
|
except ImportError:
|
|
pytest.skip(
|
|
f'{Codebase.MMEDIT} is not installed.', allow_module_level=True)
|
|
|
|
model_cfg = 'tests/test_codebase/test_mmedit/data/model.py'
|
|
model_cfg = load_config(model_cfg)[0]
|
|
deploy_cfg = Config(
|
|
dict(
|
|
backend_config=dict(type='onnxruntime'),
|
|
codebase_config=dict(type='mmedit', task='SuperResolution'),
|
|
onnx_config=dict(
|
|
type='onnx',
|
|
export_params=True,
|
|
keep_initializers_as_inputs=False,
|
|
opset_version=11,
|
|
input_shape=None,
|
|
input_names=['input'],
|
|
output_names=['output'])))
|
|
input_img = np.random.rand(32, 32, 3)
|
|
img_shape = [32, 32]
|
|
input = {'img': input_img}
|
|
onnx_file = NamedTemporaryFile(suffix='.onnx').name
|
|
task_processor = None
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def init_task_processor():
|
|
global task_processor
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
|
|
|
|
|
|
@pytest.fixture
|
|
def backend_model():
|
|
from mmdeploy.backend.onnxruntime import ORTWrapper
|
|
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
|
|
wrapper = SwitchBackendWrapper(ORTWrapper)
|
|
wrapper.set(outputs={
|
|
'output': torch.rand(1, 3, 50, 50),
|
|
})
|
|
|
|
yield task_processor.build_backend_model([''])
|
|
|
|
wrapper.recover()
|
|
|
|
|
|
def test_build_test_runner():
|
|
# Prepare dummy model
|
|
from mmedit.structures import EditDataSample
|
|
|
|
img_meta = dict(ori_img_shape=(32, 32, 3))
|
|
img = torch.rand(3, 32, 32)
|
|
data_sample = EditDataSample(gt_img=img, metainfo=img_meta)
|
|
data_sample.set_data(
|
|
dict(output=EditDataSample(pred_img=img, metainfo=img_meta)))
|
|
data_sample.set_data(dict(input=img))
|
|
outputs = [data_sample]
|
|
model = DummyModel(outputs=outputs)
|
|
assert model is not None
|
|
# Run test
|
|
with TemporaryDirectory() as dir:
|
|
runner = task_processor.build_test_runner(model, dir)
|
|
wrapped_func = WrapFunction(runner.test)
|
|
|
|
with RewriterContext({}):
|
|
_ = wrapped_func()
|
|
|
|
|
|
def test_build_pytorch_model():
|
|
from mmedit.models import BaseEditModel
|
|
model = task_processor.build_pytorch_model(None)
|
|
assert isinstance(model, BaseEditModel)
|
|
|
|
|
|
def test_build_backend_model(backend_model):
|
|
assert backend_model is not None
|
|
|
|
|
|
def test_create_input():
|
|
inputs = task_processor.create_input(input_img, input_shape=img_shape)
|
|
assert inputs is not None
|
|
|
|
|
|
def test_visualize(backend_model):
|
|
input_dict, _ = task_processor.create_input(input_img, img_shape)
|
|
|
|
with torch.no_grad():
|
|
results = backend_model.test_step(input_dict)[0]
|
|
|
|
with TemporaryDirectory() as dir:
|
|
filename = dir + 'tmp.jpg'
|
|
task_processor.visualize(input_img, results, filename, 'window')
|
|
assert os.path.exists(filename)
|
|
|
|
|
|
def test_get_tensor_from_input():
|
|
assert type(task_processor.get_tensor_from_input(input)) is not dict
|
|
|
|
|
|
def test_get_partition_cfg():
|
|
with pytest.raises(NotImplementedError):
|
|
task_processor.get_partition_cfg(None)
|
|
|
|
|
|
def test_build_dataset_and_dataloader():
|
|
data = dict(
|
|
type='BasicImageDataset',
|
|
ann_file='test_ann.txt',
|
|
metainfo=dict(dataset_type='div2k', task_name='sisr'),
|
|
data_root='tests/test_codebase/test_mmedit/data',
|
|
data_prefix=dict(img='imgs', gt='imgs'),
|
|
pipeline=[
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
key='img',
|
|
color_type='color',
|
|
channel_order='rgb',
|
|
imdecode_backend='cv2'),
|
|
])
|
|
dataset = task_processor.build_dataset(dataset_cfg=data)
|
|
assert isinstance(dataset, Dataset), 'Failed to build dataset'
|
|
dataloader_cfg = dict(
|
|
num_workers=4,
|
|
persistent_workers=False,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=data)
|
|
dataloader = task_processor.build_dataloader(dataloader_cfg)
|
|
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
|