mmdeploy/tests/test_codebase/test_mmrotate/data/model.py

158 lines
5.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
dataset_type = 'DOTADataset'
data_root = 'tests/test_codebase/test_mmrotate/data/'
ann_file = 'dota_sample/'
file_client_args = dict(backend='disk')
val_pipeline = [
dict(
type='mmdet.LoadImageFromFile', file_client_args=dict(backend='disk')),
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
test_pipeline = [
dict(
type='mmdet.LoadImageFromFile', file_client_args=dict(backend='disk')),
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='DOTADataset',
data_root=data_root,
ann_file=ann_file,
data_prefix=dict(img_path='trainval/images/'),
test_mode=True,
pipeline=[
dict(
type='mmdet.LoadImageFromFile',
file_client_args=dict(backend='disk')),
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
dict(
type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
dict(
type='ConvertBoxType',
box_type_mapping=dict(gt_bboxes='rbox')),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]))
test_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='DOTADataset',
data_root=data_root,
ann_file=ann_file,
data_prefix=dict(img_path='trainval/images/'),
test_mode=True,
pipeline=[
dict(
type='mmdet.LoadImageFromFile',
file_client_args=dict(backend='disk')),
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
dict(
type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
dict(
type='ConvertBoxType',
box_type_mapping=dict(gt_bboxes='rbox')),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]))
default_scope = 'mmrotate'
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='RotLocalVisualizer',
vis_backends=[dict(type='LocalVisBackend')],
name='visualizer')
model = dict(
type='mmdet.RetinaNet',
data_preprocessor=dict(
type='mmdet.DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
boxtype2tensor=False),
backbone=dict(
type='mmdet.ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='mmdet.RetinaHead',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='FakeRotatedAnchorGenerator',
angle_version='le135',
octave_base_scale=4,
scales_per_octave=3,
ratios=[1.0, 0.5, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHTRBBoxCoder',
angle_version='le135',
norm_factor=1,
edge_swap=False,
proj_xy=True,
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='mmdet.MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='RBboxOverlaps2D')),
sampler=dict(type='mmdet.PseudoSampler'),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms_rotated', iou_threshold=0.1),
max_per_img=2000))