158 lines
5.3 KiB
Python
158 lines
5.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
dataset_type = 'DOTADataset'
|
|
data_root = 'tests/test_codebase/test_mmrotate/data/'
|
|
ann_file = 'dota_sample/'
|
|
file_client_args = dict(backend='disk')
|
|
val_pipeline = [
|
|
dict(
|
|
type='mmdet.LoadImageFromFile', file_client_args=dict(backend='disk')),
|
|
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
|
|
dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
|
|
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
test_pipeline = [
|
|
dict(
|
|
type='mmdet.LoadImageFromFile', file_client_args=dict(backend='disk')),
|
|
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
val_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type='DOTADataset',
|
|
data_root=data_root,
|
|
ann_file=ann_file,
|
|
data_prefix=dict(img_path='trainval/images/'),
|
|
test_mode=True,
|
|
pipeline=[
|
|
dict(
|
|
type='mmdet.LoadImageFromFile',
|
|
file_client_args=dict(backend='disk')),
|
|
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
|
|
dict(
|
|
type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
|
|
dict(
|
|
type='ConvertBoxType',
|
|
box_type_mapping=dict(gt_bboxes='rbox')),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]))
|
|
test_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type='DOTADataset',
|
|
data_root=data_root,
|
|
ann_file=ann_file,
|
|
data_prefix=dict(img_path='trainval/images/'),
|
|
test_mode=True,
|
|
pipeline=[
|
|
dict(
|
|
type='mmdet.LoadImageFromFile',
|
|
file_client_args=dict(backend='disk')),
|
|
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
|
|
dict(
|
|
type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
|
|
dict(
|
|
type='ConvertBoxType',
|
|
box_type_mapping=dict(gt_bboxes='rbox')),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]))
|
|
default_scope = 'mmrotate'
|
|
vis_backends = [dict(type='LocalVisBackend')]
|
|
visualizer = dict(
|
|
type='RotLocalVisualizer',
|
|
vis_backends=[dict(type='LocalVisBackend')],
|
|
name='visualizer')
|
|
model = dict(
|
|
type='mmdet.RetinaNet',
|
|
data_preprocessor=dict(
|
|
type='mmdet.DetDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
bgr_to_rgb=True,
|
|
pad_size_divisor=32,
|
|
boxtype2tensor=False),
|
|
backbone=dict(
|
|
type='mmdet.ResNet',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=1,
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
norm_eval=True,
|
|
style='pytorch',
|
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
|
neck=dict(
|
|
type='mmdet.FPN',
|
|
in_channels=[256, 512, 1024, 2048],
|
|
out_channels=256,
|
|
start_level=1,
|
|
add_extra_convs='on_input',
|
|
num_outs=5),
|
|
bbox_head=dict(
|
|
type='mmdet.RetinaHead',
|
|
num_classes=15,
|
|
in_channels=256,
|
|
stacked_convs=4,
|
|
feat_channels=256,
|
|
anchor_generator=dict(
|
|
type='FakeRotatedAnchorGenerator',
|
|
angle_version='le135',
|
|
octave_base_scale=4,
|
|
scales_per_octave=3,
|
|
ratios=[1.0, 0.5, 2.0],
|
|
strides=[8, 16, 32, 64, 128]),
|
|
bbox_coder=dict(
|
|
type='DeltaXYWHTRBBoxCoder',
|
|
angle_version='le135',
|
|
norm_factor=1,
|
|
edge_swap=False,
|
|
proj_xy=True,
|
|
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
|
|
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
|
|
loss_cls=dict(
|
|
type='mmdet.FocalLoss',
|
|
use_sigmoid=True,
|
|
gamma=2.0,
|
|
alpha=0.25,
|
|
loss_weight=1.0),
|
|
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
|
train_cfg=dict(
|
|
assigner=dict(
|
|
type='mmdet.MaxIoUAssigner',
|
|
pos_iou_thr=0.5,
|
|
neg_iou_thr=0.4,
|
|
min_pos_iou=0,
|
|
ignore_iof_thr=-1,
|
|
iou_calculator=dict(type='RBboxOverlaps2D')),
|
|
sampler=dict(type='mmdet.PseudoSampler'),
|
|
allowed_border=-1,
|
|
pos_weight=-1,
|
|
debug=False),
|
|
test_cfg=dict(
|
|
nms_pre=2000,
|
|
min_bbox_size=0,
|
|
score_thr=0.05,
|
|
nms=dict(type='nms_rotated', iou_threshold=0.1),
|
|
max_per_img=2000))
|