mmdeploy/tests/test_codebase/test_mmseg/test_segmentation.py
AllentDan 4fc8828af8 fix ocr UT
fix ci and lint

fix det

fix cuda ci

fix mmdet test

update object detection

fix ut

fix layer norm ut

update ut

lock mmeit version

fix mmocr mmcls ut

add conftest.py

fix ocr ut

fix mmedit ci

install mmedit from source

fix rknn model and prepare_onnx_paddings__tensorrt UT

docstring

fix coreml export

update mmocr config

small test

recovery assert

fix ci
2022-09-29 16:37:36 +08:00

162 lines
5.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import Any
import mmcv
import pytest
import torch
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import SwitchBackendWrapper
try:
import_codebase(Codebase.MMSEG)
except ImportError:
pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True)
from .utils import generate_datasample # noqa: E402
from .utils import generate_mmseg_deploy_config # noqa: E402
model_cfg_path = 'tests/test_codebase/test_mmseg/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = generate_mmseg_deploy_config()
task_processor = None
img_shape = (32, 32)
tiger_img_path = 'tests/data/tiger.jpeg'
img = mmcv.imread(tiger_img_path)
img = mmcv.imresize(img, img_shape)
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
@pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0])
def test_build_pytorch_model(from_mmrazor: Any):
from mmseg.models.segmentors.base import BaseSegmentor
if from_mmrazor is False:
_task_processor = task_processor
else:
_model_cfg_path = 'tests/test_codebase/test_mmseg/data/' \
'mmrazor_model.py'
_model_cfg = load_config(_model_cfg_path)[0]
_model_cfg.algorithm.architecture.model.type = 'mmseg.EncoderDecoder'
_model_cfg.algorithm.distiller.teacher.type = 'mmseg.EncoderDecoder'
_deploy_cfg = copy.deepcopy(deploy_cfg)
_deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor
_task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu')
if not isinstance(from_mmrazor, bool):
with pytest.raises(
TypeError,
match='`from_mmrazor` attribute must be '
'boolean type! '
f'but got: {from_mmrazor}'):
_ = _task_processor.from_mmrazor
return
assert from_mmrazor == _task_processor.from_mmrazor
if from_mmrazor:
pytest.importorskip('mmrazor', reason='mmrazor is not installed.')
model = _task_processor.build_pytorch_model(None)
assert isinstance(model, BaseSegmentor)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, 1, *img_shape),
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
img_path = 'tests/data/tiger.jpeg'
data_preprocessor = task_processor.build_data_preprocessor()
inputs = task_processor.create_input(
img_path, input_shape=img_shape, data_preprocessor=data_preprocessor)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_build_data_preprocessor():
from mmseg.models import SegDataPreProcessor
data_preprocessor = task_processor.build_data_preprocessor()
assert isinstance(data_preprocessor, SegDataPreProcessor)
def test_get_visualizer():
from mmseg.visualization import SegLocalVisualizer
tmp_dir = TemporaryDirectory().name
visualizer = task_processor.get_visualizer('ort', tmp_dir)
assert isinstance(visualizer, SegLocalVisualizer)
def test_get_tensort_from_input():
data = torch.rand(3, 4, 5)
input_data = {'inputs': data}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, data)
def test_get_partition_cfg():
try:
_ = task_processor.get_partition_cfg(partition_type='')
except NotImplementedError:
pass
def test_build_dataset_and_dataloader():
from torch.utils.data import DataLoader, Dataset
val_dataloader = model_cfg['val_dataloader']
dataset = task_processor.build_dataset(
dataset_cfg=val_dataloader['dataset'])
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(val_dataloader)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_build_test_runner(backend_model):
from mmdeploy.codebase.base.runner import DeployTestRunner
temp_dir = TemporaryDirectory().name
runner = task_processor.build_test_runner(backend_model, temp_dir)
assert isinstance(runner, DeployTestRunner)
def test_visualize():
h, w = img.shape[:2]
datasample = generate_datasample(h, w)
output_file = NamedTemporaryFile(suffix='.jpg').name
task_processor.visualize(
img, datasample, output_file, show_result=False, window_name='test')
def test_get_preprocess():
process = task_processor.get_preprocess()
assert process is not None
def test_get_postprocess():
process = task_processor.get_postprocess()
assert isinstance(process, dict)
def test_get_model_name():
name = task_processor.get_model_name()
assert isinstance(name, str)