mmdeploy/csrc/apis/c/restorer.cpp
lzhangzz 640aa03538
Support Windows (#106)
* minor changes

* support windows

* fix GCC build

* fix lint

* reformat

* fix Windows build

* fix GCC build

* search backend ops for onnxruntime

* fix lint

* fix lint

* code clean-up

* code clean-up

* fix clang build

* fix trt support

* fix cmake for ncnn

* fix cmake for openvino

* fix SDK Python API

* handle ops for other backends (ncnn, trt)

* handle SDK Python API library location

* robustify linkage

* fix cuda

* minor fix for openvino & ncnn

* use CMAKE_CUDA_ARCHITECTURES if set

* fix cuda preprocessor

* fix misc

* fix pplnn & pplcv, drop support for pplcv<0.6.0

* robustify cmake

* update build.md (#2)

* build dynamic modules as module library & fix demo (partially)

* fix candidate path for mmdeploy_python

* move "enable CUDA" to cmake config for demo

* refine demo cmake

* add comment

* fix ubuntu build

* revert docs/en/build.md

* fix C API

* fix lint

* Windows build doc (#3)

* check in docs related to mmdeploy build on windows

* update build guide on windows platform

* update build guide on windows platform

* make path of thirdparty libraries consistent

* make path consistency

* correct build command for custom ops

* correct build command for sdk

* update sdk build instructions

* update doc

* correct build command

* fix lint

* correct build command and fix lint

Co-authored-by: lvhan <lvhan@pjlab.org>

* trailing whitespace (#4)

* minor fix

* fix sr sdk model

* fix type deduction

* fix cudaFree after driver shutting down

* update ppl.cv installation warning (#5)

* fix device allocator threshold & fix lint

* update doc (#6)

* update ppl.cv installation warning

* missing 'git clone'

Co-authored-by: chenxin <chenxin2@sensetime.com>
Co-authored-by: zhangli <zhangli@sensetime.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: lvhan <lvhan@pjlab.org>
2022-02-24 20:08:44 +08:00

123 lines
3.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "restorer.h"
#include "codebase/mmedit/mmedit.h"
#include "core/device.h"
#include "core/graph.h"
#include "core/mat.h"
#include "core/utils/formatter.h"
#include "handle.h"
using namespace mmdeploy;
namespace {
const Value &config_template() {
// clang-format off
static Value v {
{
"pipeline", {
{
"tasks", {
{
{"name", "det"},
{"type", "Inference"},
{"params", {{"model", "TBD"}}},
{"input", {"img"}},
{"output", {"out"}}
}
}
},
{"input", {"img"}},
{"output", {"out"}}
}
}
};
// clang-format on
return v;
}
template <class ModelType>
int mmdeploy_restorer_create_impl(ModelType &&m, const char *device_name, int device_id,
mm_handle_t *handle) {
try {
auto config = config_template();
config["pipeline"]["tasks"][0]["params"]["model"] = std::forward<ModelType>(m);
auto restorer = std::make_unique<Handle>(device_name, device_id, std::move(config));
*handle = restorer.release();
return MM_SUCCESS;
} catch (const std::exception &e) {
MMDEPLOY_ERROR("exception caught: {}", e.what());
} catch (...) {
MMDEPLOY_ERROR("unknown exception caught");
}
return MM_E_FAIL;
}
} // namespace
int mmdeploy_restorer_create(mm_model_t model, const char *device_name, int device_id,
mm_handle_t *handle) {
return mmdeploy_restorer_create_impl(*static_cast<Model *>(model), device_name, device_id,
handle);
}
int mmdeploy_restorer_create_by_path(const char *model_path, const char *device_name, int device_id,
mm_handle_t *handle) {
return mmdeploy_restorer_create_impl(model_path, device_name, device_id, handle);
}
int mmdeploy_restorer_apply(mm_handle_t handle, const mm_mat_t *images, int count,
mm_mat_t **results) {
if (handle == nullptr || images == nullptr || count == 0 || results == nullptr) {
return MM_E_INVALID_ARG;
}
try {
auto restorer = static_cast<Handle *>(handle);
Value input{Value::kArray};
for (int i = 0; i < count; ++i) {
Mat _mat{images[i].height, images[i].width, PixelFormat(images[i].format),
DataType(images[i].type), images[i].data, Device{"cpu"}};
input.front().push_back({{"ori_img", _mat}});
}
auto output = restorer->Run(std::move(input)).value().front();
auto restorer_output = from_value<std::vector<mmedit::RestorerOutput>>(output);
auto deleter = [&](mm_mat_t *p) { mmdeploy_restorer_release_result(p, count); };
std::unique_ptr<mm_mat_t[], decltype(deleter)> _results(new mm_mat_t[count]{}, deleter);
for (int i = 0; i < count; ++i) {
auto upscale = restorer_output[i];
auto &res = _results[i];
res.data = new uint8_t[upscale.byte_size()];
memcpy(res.data, upscale.data<uint8_t>(), upscale.byte_size());
res.format = (mm_pixel_format_t)upscale.pixel_format();
res.height = upscale.height();
res.width = upscale.width();
res.channel = upscale.channel();
res.type = (mm_data_type_t)upscale.type();
}
*results = _results.release();
return MM_SUCCESS;
} catch (const std::exception &e) {
MMDEPLOY_ERROR("exception caught: {}", e.what());
} catch (...) {
MMDEPLOY_ERROR("unknown exception caught");
}
return MM_E_FAIL;
}
void mmdeploy_restorer_release_result(mm_mat_t *results, int count) {
for (int i = 0; i < count; ++i) {
delete[] results[i].data;
}
delete[] results;
}
void mmdeploy_restorer_destroy(mm_handle_t handle) { delete static_cast<Handle *>(handle); }