lzhangzz 73cf3b5feb
[Fix] Optimize preprocess & fix pontential use-after-free (#229)
* hold async data and wait only at the end of the pipeline

* fix use-after-free bugs

* fix wording

* bypass trivial cases for Pad to avoid ppl.cv's bug

* fix pad

* fix lint

* cleanup

* fix DefaultFormatBundle

* fix all cpu preprocess impl

* suppress log

* fix dynamic library build & add comments for SyncOnScopeExit
2022-03-28 17:29:22 +08:00

93 lines
3.2 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "crop.h"
#include "archive/json_archive.h"
using namespace std;
namespace mmdeploy {
CenterCropImpl::CenterCropImpl(const Value& args) : TransformImpl(args) {
if (!args.contains(("crop_size"))) {
throw std::invalid_argument("'crop_size' is expected");
}
if (args["crop_size"].is_number_integer()) {
int crop_size = args["crop_size"].get<int>();
arg_.crop_size[0] = arg_.crop_size[1] = crop_size;
} else if (args["crop_size"].is_array() && args["crop_size"].size() == 2) {
arg_.crop_size[0] = args["crop_size"][0].get<int>();
arg_.crop_size[1] = args["crop_size"][1].get<int>();
} else {
throw std::invalid_argument("'crop_size' should be integer or an int array of size 2");
}
}
Result<Value> CenterCropImpl::Process(const Value& input) {
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
auto img_fields = GetImageFields(input);
// copy input data, and update its properties
Value output = input;
for (auto& key : img_fields) {
auto tensor = input[key].get<Tensor>();
auto desc = tensor.desc();
int h = desc.shape[1];
int w = desc.shape[2];
int crop_height = arg_.crop_size[0];
int crop_width = arg_.crop_size[1];
int y1 = std::max(0, int(std::round((h - crop_height) / 2.0)));
int x1 = std::max(0, int(std::round((w - crop_width) / 2.0)));
int y2 = std::min(h, y1 + crop_height) - 1;
int x2 = std::min(w, x1 + crop_width) - 1;
OUTCOME_TRY(auto dst_tensor, CropImage(tensor, y1, x1, y2, x2));
auto& shape = dst_tensor.desc().shape;
output["img_shape"] = {shape[0], shape[1], shape[2], shape[3]};
if (input.contains("scale_factor")) {
// image has been processed by `Resize` transform before.
// Compute cropped image's offset against the original image
assert(input["scale_factor"].is_array() && input["scale_factor"].size() >= 2);
float w_scale = input["scale_factor"][0].get<float>();
float h_scale = input["scale_factor"][1].get<float>();
output["offset"].push_back(x1 / w_scale);
output["offset"].push_back(y1 / h_scale);
} else {
output["offset"].push_back(x1);
output["offset"].push_back(y1);
}
SetTransformData(output, key, std::move(dst_tensor));
}
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
return output;
}
CenterCrop::CenterCrop(const Value& args, int version) : Transform(args) {
auto impl_creator = Registry<CenterCropImpl>::Get().GetCreator(specified_platform_, version);
if (nullptr == impl_creator) {
MMDEPLOY_ERROR("'CenterCrop' is not supported on '{}' platform", specified_platform_);
throw std::domain_error("'Resize' is not supported on specified platform");
}
impl_ = impl_creator->Create(args);
}
class CenterCropCreator : public Creator<Transform> {
public:
const char* GetName(void) const override { return "CenterCrop"; }
int GetVersion(void) const override { return version_; }
ReturnType Create(const Value& args) override { return make_unique<CenterCrop>(args, version_); }
private:
int version_{1};
};
REGISTER_MODULE(Transform, CenterCropCreator);
MMDEPLOY_DEFINE_REGISTRY(CenterCropImpl);
} // namespace mmdeploy