lzhangzz 73cf3b5feb
[Fix] Optimize preprocess & fix pontential use-after-free (#229)
* hold async data and wait only at the end of the pipeline

* fix use-after-free bugs

* fix wording

* bypass trivial cases for Pad to avoid ppl.cv's bug

* fix pad

* fix lint

* cleanup

* fix DefaultFormatBundle

* fix all cpu preprocess impl

* suppress log

* fix dynamic library build & add comments for SyncOnScopeExit
2022-03-28 17:29:22 +08:00

118 lines
3.9 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "pad.h"
#include "archive/json_archive.h"
using namespace std;
namespace mmdeploy {
PadImpl::PadImpl(const Value& args) : TransformImpl(args) {
arg_.size[0] = arg_.size[1] = 0;
if (args.contains("size") && args["size"].is_number_integer()) {
arg_.size[0] = arg_.size[1] = (args["size"].get<int>());
}
if (args.contains("size") && args["size"].is_array()) {
if (args["size"].size() != 2) {
throw std::invalid_argument("the length of size should be 2");
}
arg_.size[0] = args["size"][0].get<int>();
arg_.size[1] = args["size"][1].get<int>();
}
arg_.size_divisor = args.value("size_divisor", 1);
if (args.contains("pad_val")) {
if (args["pad_val"].is_number()) {
arg_.pad_val = args["pad_val"].get<float>();
} else if (args["pad_val"].contains("img")) {
arg_.pad_val = args["pad_val"]["img"][0].get<float>();
} else {
throw std::invalid_argument("args must be number or img dict");
}
} else {
arg_.pad_val = 0.0f;
}
arg_.pad_to_square = args.value("pad_to_square", false);
arg_.padding_mode = args.value("padding_mode", std::string("constant"));
}
Result<Value> PadImpl::Process(const Value& input) {
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
Value output = input;
auto img_fields = GetImageFields(input);
for (auto& key : img_fields) {
Tensor output_tensor;
auto tensor = input[key].get<Tensor>();
assert(tensor.desc().shape.size() == 4);
assert(tensor.desc().shape[0] == 1);
assert(tensor.desc().shape[3] == 3 || tensor.desc().shape[3] == 1);
int height = tensor.shape(1);
int width = tensor.shape(2);
std::array<int, 4> padding{0, 0, 0, 0};
if (arg_.pad_to_square) {
int max_size = std::max(tensor.shape(1), tensor.shape(2));
padding = {0, 0, max_size - width, max_size - height};
output["pad_fixed_size"].push_back(max_size);
output["pad_fixed_size"].push_back(max_size);
} else if (arg_.size[0] != 0 && arg_.size[1] != 0) {
padding = {0, 0, arg_.size[1] - width, arg_.size[0] - height};
output["pad_fixed_size"].push_back(arg_.size[0]);
output["pad_fixed_size"].push_back(arg_.size[1]);
} else if (arg_.size_divisor != 1) {
auto pad_h = (height + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
auto pad_w = (width + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
padding = {0, 0, pad_w - width, pad_h - height};
output["pad_size_divisor"] = arg_.size_divisor;
output["pad_fixed_size"].push_back(pad_h);
output["pad_fixed_size"].push_back(pad_w);
} else {
output_tensor = tensor;
output["pad_fixed_size"].push_back(height);
output["pad_fixed_size"].push_back(width);
}
if (std::count(begin(padding), end(padding), 0) != 4) {
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
} else {
output_tensor = tensor;
}
for (auto& v : output_tensor.shape()) {
output["pad_shape"].push_back(v);
}
SetTransformData(output, key, std::move(output_tensor));
}
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
return output;
}
Pad::Pad(const Value& args, int version) : Transform(args) {
auto impl_creator = Registry<PadImpl>::Get().GetCreator(specified_platform_, version);
if (nullptr == impl_creator) {
MMDEPLOY_ERROR("'Pad' is not supported on '{}' platform", specified_platform_);
throw std::domain_error("'Pad' is not supported on specified platform");
}
impl_ = impl_creator->Create(args);
}
class PadCreator : public Creator<Transform> {
public:
const char* GetName() const override { return "Pad"; }
int GetVersion() const override { return version_; }
ReturnType Create(const Value& args) override { return make_unique<Pad>(args, version_); }
private:
int version_{1};
};
REGISTER_MODULE(Transform, PadCreator);
MMDEPLOY_DEFINE_REGISTRY(PadImpl);
} // namespace mmdeploy