90 lines
3.3 KiB
Python
90 lines
3.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import Optional, Sequence
|
|
|
|
import mmcv
|
|
from mmcv import FileClient
|
|
from torch.utils.data import Dataset
|
|
|
|
from mmdeploy.utils import Codebase, get_codebase
|
|
|
|
|
|
class QuantizationImageDataset(Dataset):
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
deploy_cfg: mmcv.Config,
|
|
model_cfg: mmcv.Config,
|
|
file_client_args: Optional[dict] = None,
|
|
extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp',
|
|
'.pgm', '.tif'),
|
|
):
|
|
super().__init__()
|
|
codebase_type = get_codebase(deploy_cfg)
|
|
self.exclude_pipe = ['LoadImageFromFile']
|
|
if codebase_type == Codebase.MMCLS:
|
|
from mmcls.datasets.pipelines import Compose
|
|
elif codebase_type == Codebase.MMDET:
|
|
from mmdet.datasets.pipelines import Compose
|
|
elif codebase_type == Codebase.MMDET3D:
|
|
from mmdet3d.datasets.pipelines import Compose
|
|
self.exclude_pipe.extend([
|
|
'LoadMultiViewImageFromFiles', 'LoadImageFromFileMono3D',
|
|
'LoadPointsFromMultiSweeps', 'LoadPointsFromDict'
|
|
])
|
|
elif codebase_type == Codebase.MMEDIT:
|
|
from mmedit.datasets.pipelines import Compose
|
|
self.exclude_pipe.extend(
|
|
['LoadImageFromFileList', 'LoadPairedImageFromFile'])
|
|
elif codebase_type == Codebase.MMOCR:
|
|
from mmocr.datasets.pipelines import Compose
|
|
self.exclude_pipe.extend(
|
|
['LoadImageFromNdarray', 'LoadImageFromLMDB'])
|
|
elif codebase_type == Codebase.MMPOSE:
|
|
from mmpose.datasets.pipelines import Compose
|
|
elif codebase_type == Codebase.MMROTATE:
|
|
from mmrotate.datasets.pipelines import Compose
|
|
elif codebase_type == Codebase.MMSEG:
|
|
from mmseg.datasets.pipelines import Compose
|
|
else:
|
|
raise Exception(
|
|
'Not supported codebase_type {}'.format(codebase_type))
|
|
pipeline = filter(lambda val: val['type'] not in self.exclude_pipe,
|
|
model_cfg.data.test.pipeline)
|
|
|
|
self.preprocess = Compose(list(pipeline))
|
|
self.samples = []
|
|
self.extensions = tuple(set([i.lower() for i in extensions]))
|
|
self.file_client = FileClient.infer_client(file_client_args, path)
|
|
self.path = path
|
|
|
|
assert self.file_client.isdir(path)
|
|
files = list(
|
|
self.file_client.list_dir_or_file(
|
|
path,
|
|
list_dir=False,
|
|
list_file=True,
|
|
recursive=False,
|
|
))
|
|
for file in files:
|
|
if self.is_valid_file(self.file_client.join_path(file)):
|
|
path = self.file_client.join_path(self.path, file)
|
|
self.samples.append(path)
|
|
|
|
def __len__(self):
|
|
return len(self.samples)
|
|
|
|
def __getitem__(self, index):
|
|
sample = self.samples[index]
|
|
image = mmcv.imread(sample)
|
|
data = dict(img=image)
|
|
data = self.preprocess(data)
|
|
from mmcv.parallel import collate
|
|
data = collate([data], samples_per_gpu=1)
|
|
|
|
return {'img': data['img'].squeeze()}
|
|
|
|
def is_valid_file(self, filename: str) -> bool:
|
|
"""Check if a file is a valid sample."""
|
|
return filename.lower().endswith(self.extensions)
|