59 lines
3.9 KiB
Markdown
59 lines
3.9 KiB
Markdown
# 边、端设备测试结果
|
||
|
||
这里给出我们边、端设备的测试结论,用户可以直接通过 [model profiling](../02-how-to-run/profile_model.md) 获得自己环境的结果。
|
||
|
||
## 软硬件环境
|
||
|
||
- host OS ubuntu 18.04
|
||
- backend SNPE-1.59
|
||
- device Mi11 (qcom 888)
|
||
|
||
## mmcls 模型
|
||
|
||
| model | dataset | spatial | fp32 top-1 (%) | snpe gpu hybrid fp32 top-1 (%) | latency (ms) |
|
||
| :---------------------------------------------------------------------------------------------------------------------------: | :---------: | :-----: | :------------: | :----------------------------: | :----------: |
|
||
| [ShuffleNetV2](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | ImageNet-1k | 224x224 | 69.55 | 69.83\* | 20±7 |
|
||
| [MobilenetV2](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | ImageNet-1k | 224x224 | 71.86 | 72.14\* | 15±6 |
|
||
|
||
tips:
|
||
|
||
1. ImageNet-1k 数据集较大,仅使用一部分测试(8000/50000)
|
||
2. 边、端设备发热会降频,因此耗时实际上会波动。这里给出运行一段时间后、稳定的数值。这个结果更贴近实际需求
|
||
|
||
## mmocr 检测
|
||
|
||
| model | dataset | spatial | fp32 hmean | snpe gpu hybrid hmean | latency(ms) |
|
||
| :-------------------------------------------------------------------------------------------------------------------: | :-------: | :------: | :--------: | :-------------------: | :---------: |
|
||
| [PANet](https://github.com/open-mmlab/mmocr/blob/1.x/configs/textdet/panet/panet_resnet18_fpem-ffm_600e_icdar2015.py) | ICDAR2015 | 1312x736 | 0.795 | 0.785 @thr=0.9 | 3100±100 |
|
||
|
||
## mmpose 模型
|
||
|
||
| model | dataset | spatial | snpe hybrid AR@IoU=0.50 | snpe hybrid AP@IoU=0.50 | latency(ms) |
|
||
| :--------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------: | :-----: | :---------------------: | :---------------------: | :---------: |
|
||
| [pose_hrnet_w32](https://github.com/open-mmlab/mmpose/blob/1.x/configs/animal_2d_keypoint/topdown_heatmap/animalpose/td-hm_hrnet-w32_8xb64-210e_animalpose-256x256.py) | Animalpose | 256x256 | 0.997 | 0.989 | 630±50 |
|
||
|
||
tips:
|
||
|
||
- 测试 pose_hrnet 用的是 AnimalPose 的 test dataset,而非 val dataset
|
||
|
||
## mmseg
|
||
|
||
| model | dataset | spatial | mIoU | latency(ms) |
|
||
| :-----------------------------------------------------------------------------------------------------------------: | :--------: | :------: | :---: | :---------: |
|
||
| [fcn](https://github.com/open-mmlab/mmsegmentation/blob/1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py) | Cityscapes | 512x1024 | 71.11 | 4915±500 |
|
||
|
||
tips:
|
||
|
||
- fcn 用 512x1024 尺寸运行正常。Cityscapes 数据集 1024x2048 分辨率会导致设备重启
|
||
|
||
## 其他模型
|
||
|
||
- mmdet 需要手动把模型拆成两部分。因为
|
||
- snpe 源码中 `onnx_to_ir.py` 仅能解析输入,`ir_to_dlc.py` 还不支持 topk
|
||
- UDO (用户自定义算子)无法和 `snpe-onnx-to-dlc` 配合使用
|
||
- mmedit 模型
|
||
- srcnn 需要 cubic resize,snpe 不支持
|
||
- esrgan 可正常转换,但加载模型会导致设备重启
|
||
- mmrotate 依赖 [e2cnn](https://pypi.org/project/e2cnn/) ,需要手动安装 [其 Python3.6
|
||
兼容分支](https://github.com/QUVA-Lab/e2cnn)
|