mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
112 lines
2.7 KiB
Python
Executable File
112 lines
2.7 KiB
Python
Executable File
# Copyright (c) OpenMMLab. All rights reserved.
|
|
_base_ = []
|
|
checkpoint_config = dict(interval=1)
|
|
# yapf:disable
|
|
log_config = dict(
|
|
interval=1,
|
|
hooks=[
|
|
dict(type='TextLoggerHook')
|
|
|
|
])
|
|
# yapf:enable
|
|
dist_params = dict(backend='nccl')
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume_from = None
|
|
workflow = [('train', 1)]
|
|
|
|
# model
|
|
label_convertor = dict(
|
|
type='CTCConvertor', dict_type='DICT36', with_unknown=False, lower=True)
|
|
|
|
model = dict(
|
|
type='CRNNNet',
|
|
preprocessor=None,
|
|
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1),
|
|
encoder=None,
|
|
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
|
|
loss=dict(type='CTCLoss'),
|
|
label_convertor=label_convertor,
|
|
pretrained=None)
|
|
|
|
train_cfg = None
|
|
test_cfg = None
|
|
|
|
# optimizer
|
|
optimizer = dict(type='Adadelta', lr=1.0)
|
|
optimizer_config = dict(grad_clip=None)
|
|
# learning policy
|
|
lr_config = dict(policy='step', step=[])
|
|
total_epochs = 5
|
|
|
|
# data
|
|
img_norm_cfg = dict(mean=[127], std=[127])
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', color_type='grayscale'),
|
|
dict(
|
|
type='ResizeOCR',
|
|
height=32,
|
|
min_width=100,
|
|
max_width=100,
|
|
keep_aspect_ratio=False),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(
|
|
type='Collect',
|
|
keys=['img'],
|
|
meta_keys=['filename', 'resize_shape', 'text', 'valid_ratio']),
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile', color_type='grayscale'),
|
|
dict(
|
|
type='ResizeOCR',
|
|
height=32,
|
|
min_width=32,
|
|
max_width=None,
|
|
keep_aspect_ratio=True),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(
|
|
type='Collect',
|
|
keys=['img'],
|
|
meta_keys=['filename', 'resize_shape', 'valid_ratio']),
|
|
]
|
|
|
|
dataset_type = 'OCRDataset'
|
|
|
|
test_prefix = 'tests/test_codebase/test_mmocr/data/'
|
|
|
|
test_img_prefix1 = test_prefix
|
|
|
|
test_ann_file1 = test_prefix + 'text_recognition.txt'
|
|
|
|
test1 = dict(
|
|
type=dataset_type,
|
|
img_prefix=test_img_prefix1,
|
|
ann_file=test_ann_file1,
|
|
loader=dict(
|
|
type='HardDiskLoader',
|
|
repeat=1,
|
|
parser=dict(
|
|
type='LineStrParser',
|
|
keys=['filename', 'text'],
|
|
keys_idx=[0, 1],
|
|
separator=' ')),
|
|
pipeline=None,
|
|
test_mode=True)
|
|
|
|
data = dict(
|
|
samples_per_gpu=64,
|
|
workers_per_gpu=4,
|
|
val_dataloader=dict(samples_per_gpu=1),
|
|
test_dataloader=dict(samples_per_gpu=1),
|
|
val=dict(
|
|
type='UniformConcatDataset', datasets=[test1], pipeline=test_pipeline),
|
|
test=dict(
|
|
type='UniformConcatDataset', datasets=[test1], pipeline=test_pipeline))
|
|
|
|
evaluation = dict(interval=1, metric='acc')
|
|
|
|
cudnn_benchmark = True
|