mmdeploy/tools/deploy.py
q.yao b32fc41bed
[Refactor][API2.0] Api refactor2.0 (#529)
* [refactor][API2.0]  Add onnx export and jit trace (#419)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add kwargs

* remove comment

* better pipeline manager

* remove print

* [Refactor][API2.0] Api partition calibration (#433)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add partition

* move calibration

* Better create_calib_table

* better deploy

* add kwargs

* remove comment

* better pipeline manager

* rename api, remove reduant variable, and misc

* [Refactor][API2.0] Api ncnn openvino (#435)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add ncnn api

* finish ncnn api

* add openvino support

* add kwargs

* remove comment

* better pipeline manager

* merge fix

* merge util and onnx2ncnn

* fix docstring

* [Refactor][API2.0] API for TensorRT (#519)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add partition

* move calibration

* Better create_calib_table

* better deploy

* add kwargs

* remove comment

* Add tensorrt API

* better pipeline manager

* add tensorrt new api

* remove print

* rename api, remove reduant variable, and misc

* add docstring

* [Refactor][API2.0] Api ppl other (#528)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add kwargs

* Add new APIS for pplnn sdk and misc

* remove comment

* better pipeline manager

* merge fix

* update tools/onnx2pplnn.py

* rename function
2022-05-31 09:18:18 +08:00

354 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os.path as osp
from functools import partial
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_model_inputs,
get_partition_config, get_root_logger, load_config,
target_wrapper)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img', default=None, help='image used to test model')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate in int8 mode. If not \
specified, it will use "val" dataset in model config instead.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn')
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(deploy_cfg, model_cfg, args.work_dir, pth=checkpoint_path)
ret_value = mp.Value('d', 0, lock=False)
# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)
if backend == Backend.TENSORRT:
model_params = get_model_inputs(deploy_cfg)
assert len(model_params) == len(ir_files)
from mmdeploy.apis.tensorrt import is_available as trt_is_available
assert trt_is_available(
), 'TensorRT is not available,' \
+ ' please install TensorRT and build TensorRT custom ops first.'
from mmdeploy.apis.tensorrt import onnx2tensorrt
PIPELINE_MANAGER.enable_multiprocess(True, [onnx2tensorrt])
PIPELINE_MANAGER.set_log_level(logging.INFO, [onnx2tensorrt])
backend_files = []
for model_id, model_param, onnx_path in zip(
range(len(ir_files)), model_params, ir_files):
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
save_file = model_param.get('save_file', onnx_name + '.engine')
partition_type = 'end2end' if partition_cfgs is None \
else onnx_name
onnx2tensorrt(
args.work_dir,
save_file,
model_id,
deploy_cfg_path,
onnx_path,
device=args.device,
partition_type=partition_type)
backend_files.append(osp.join(args.work_dir, save_file))
elif backend == Backend.NCNN:
from mmdeploy.apis.ncnn import is_available as is_available_ncnn
if not is_available_ncnn():
logger.error('ncnn support is not available.')
exit(1)
import mmdeploy.apis.ncnn as ncnn_api
from mmdeploy.apis.ncnn import get_output_model_file
PIPELINE_MANAGER.set_log_level(log_level, [ncnn_api.from_onnx])
backend_files = []
for onnx_path in ir_files:
model_param_path, model_bin_path = get_output_model_file(
onnx_path, args.work_dir)
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
ncnn_api.from_onnx(onnx_path, osp.join(args.work_dir, onnx_name))
if quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
else:
backend_files += [model_param_path, model_bin_path]
elif backend == Backend.OPENVINO:
from mmdeploy.apis.openvino import \
is_available as is_available_openvino
assert is_available_openvino(), \
'OpenVINO is not available, please install OpenVINO first.'
import mmdeploy.apis.openvino as openvino_api
from mmdeploy.apis.openvino import (get_input_info_from_cfg,
get_mo_options_from_cfg,
get_output_model_file)
PIPELINE_MANAGER.set_log_level(log_level, [openvino_api.from_onnx])
openvino_files = []
for onnx_path in ir_files:
model_xml_path = get_output_model_file(onnx_path, args.work_dir)
input_info = get_input_info_from_cfg(deploy_cfg)
output_names = get_ir_config(deploy_cfg).output_names
mo_options = get_mo_options_from_cfg(deploy_cfg)
openvino_api.from_onnx(onnx_path, args.work_dir, input_info,
output_names, mo_options)
openvino_files.append(model_xml_path)
backend_files = openvino_files
elif backend == Backend.PPLNN:
from mmdeploy.apis.pplnn import is_available as is_available_pplnn
assert is_available_pplnn(), \
'PPLNN is not available, please install PPLNN first.'
from mmdeploy.apis.pplnn import from_onnx
pplnn_pipeline_funcs = [from_onnx]
PIPELINE_MANAGER.set_log_level(logging.INFO, pplnn_pipeline_funcs)
pplnn_files = []
for onnx_path in ir_files:
algo_file = onnx_path.replace('.onnx', '.json')
model_inputs = get_model_inputs(deploy_cfg)
assert 'opt_shape' in model_inputs, 'Expect opt_shape ' \
'in deploy config for PPLNN'
# PPLNN accepts only 1 input shape for optimization,
# may get changed in the future
input_shapes = [model_inputs.opt_shape]
algo_prefix = osp.splitext(algo_file)[0]
from_onnx(
onnx_path,
algo_prefix,
device=args.device,
input_shapes=input_shapes)
pplnn_files += [onnx_path, algo_file]
backend_files = pplnn_files
if args.test_img is None:
args.test_img = args.img
import os
is_display = os.getenv('DISPLAY')
# for headless installation.
if is_display is not None:
# visualize model of the backend
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files,
args.test_img, args.device),
kwargs=dict(
backend=backend,
output_file=osp.join(args.work_dir,
f'output_{backend.value}.jpg'),
show_result=args.show),
ret_value=ret_value)
# visualize pytorch model
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
else:
logger.warning(
'\"visualize_model\" has been skipped may be because it\'s \
running on a headless device.')
logger.info('All process success.')
if __name__ == '__main__':
main()