mmdeploy/csrc/apis/c/detector.h
Chen Xin 0ce7c83c63
mmrotate sdk module (#450)
* support mmrotate

* fix name

* windows default link to cudart_static.lib, which is not compatible with static build && python_api

* python api

* fix ci

* fix type & remove unused meta info

* fix doxygen, add [out] to @param

* fix mmrotate-c-api

* refactor naming

* refactor naming

* fix lint

* fix lint

* move replace_RResize -> get_preprocess

* Update cuda.cmake

On windows, make static lib and python api build success.

* fix ptr

* Use unique ptr to prevent memory leaks

* move unique_ptr

* remove deleter

Co-authored-by: chenxin2 <chenxin2@sensetime.com>
Co-authored-by: cx <cx@ubuntu20.04>
2022-05-17 23:37:32 +08:00

87 lines
2.9 KiB
C

// Copyright (c) OpenMMLab. All rights reserved.
/**
* @file detector.h
* @brief Interface to MMDetection task
*/
#ifndef MMDEPLOY_DETECTOR_H
#define MMDEPLOY_DETECTOR_H
#include "common.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct mm_instance_mask_t {
char* data;
int height;
int width;
} mm_instance_mask_t;
typedef struct mm_detect_t {
int label_id;
float score;
mm_rect_t bbox;
mm_instance_mask_t* mask;
} mm_detect_t;
/**
* @brief Create detector's handle
* @param[in] model an instance of mmdetection sdk model created by
* \ref mmdeploy_model_create_by_path or \ref mmdeploy_model_create in \ref model.h
* @param[in] device_name name of device, such as "cpu", "cuda", etc.
* @param[in] device_id id of device.
* @param[out] handle instance of a detector
* @return status of creating detector's handle
*/
MMDEPLOY_API int mmdeploy_detector_create(mm_model_t model, const char* device_name, int device_id,
mm_handle_t* handle);
/**
* @brief Create detector's handle
* @param[in] model_path path of mmdetection sdk model exported by mmdeploy model converter
* @param[in] device_name name of device, such as "cpu", "cuda", etc.
* @param[in] device_id id of device.
* @param[out] handle instance of a detector
* @return status of creating detector's handle
*/
MMDEPLOY_API int mmdeploy_detector_create_by_path(const char* model_path, const char* device_name,
int device_id, mm_handle_t* handle);
/**
* @brief Apply detector to batch images and get their inference results
* @param[in] handle detector's handle created by \ref mmdeploy_detector_create_by_path
* @param[in] mats a batch of images
* @param[in] mat_count number of images in the batch
* @param[out] results a linear buffer to save detection results of each image. It must be released
* by \ref mmdeploy_detector_release_result
* @param[out] result_count a linear buffer with length being \p mat_count to save the number of
* detection results of each image. And it must be released by \ref
* mmdeploy_detector_release_result
* @return status of inference
*/
MMDEPLOY_API int mmdeploy_detector_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
mm_detect_t** results, int** result_count);
/** @brief Release the inference result buffer created by \ref mmdeploy_detector_apply
* @param[in] results detection results buffer
* @param[in] result_count \p results size buffer
* @param[in] count length of \p result_count
*/
MMDEPLOY_API void mmdeploy_detector_release_result(mm_detect_t* results, const int* result_count,
int count);
/**
* @brief Destroy detector's handle
* @param[in] handle detector's handle created by \ref mmdeploy_detector_create_by_path
*/
MMDEPLOY_API void mmdeploy_detector_destroy(mm_handle_t handle);
#ifdef __cplusplus
}
#endif
#endif // MMDEPLOY_DETECTOR_H