mmdeploy/tests/test_codebase/test_mmagic/test_super_resolution.py
huayuan4396 5e9d27b8d6
mmedit -> mmagic (#2061)
* mmedit -> mmagic --initial

* fix codebase/cmakelist

* add tests/test_codebase/test_mmagic/data/

* fix lint

* fix rename

* fix EditDataPreprocessor

* fix EditTestLoop to TestLoop for mmagic

* fix EditValLoop to ValLoop for mmagic

* fix EditEvaluator to Evaluator for mmagic

* modify rgtest/mmagic.yml

* fix to MultiEvaluator

* fix mmagic model.py

* fix reg_test

* fix lint

* pass rgtest

* fix ci quantize.yml

* fix ci

* update docs

* fix lint

* fix lint

* fix lint

* fix sr end2endmodel device

* change destruct device back to cpu

* modify output device

* rename function name

* update docstring
2023-05-19 15:00:45 +08:00

149 lines
4.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
import numpy as np
import pytest
import torch
from mmengine import Config
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import mmdeploy.apis.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.core.rewriters.rewriter_manager import RewriterContext
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper, WrapFunction
try:
import_codebase(Codebase.MMAGIC)
except ImportError:
pytest.skip(
f'{Codebase.MMAGIC} is not installed.', allow_module_level=True)
model_cfg = 'tests/test_codebase/test_mmagic/data/model.py'
model_cfg = load_config(model_cfg)[0]
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmagic', task='SuperResolution'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
input_img = np.random.rand(32, 32, 3)
img_shape = [32, 32]
input = {'img': input_img}
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = None
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, 3, 50, 50),
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_test_runner():
# Prepare dummy model
from mmagic.structures import DataSample
img_meta = dict(ori_img_shape=(32, 32, 3))
img = torch.rand(3, 32, 32)
data_sample = DataSample(gt_img=img, metainfo=img_meta)
data_sample.set_data(
dict(output=DataSample(pred_img=img, metainfo=img_meta)))
data_sample.set_data(dict(input=img))
outputs = [data_sample]
model = DummyModel(outputs=outputs)
assert model is not None
# Run test
with TemporaryDirectory() as dir:
runner = task_processor.build_test_runner(model, dir)
wrapped_func = WrapFunction(runner.test)
with RewriterContext({}):
_ = wrapped_func()
def test_build_pytorch_model():
from mmagic.models import BaseEditModel
model = task_processor.build_pytorch_model(None)
assert isinstance(model, BaseEditModel)
def test_build_backend_model(backend_model):
assert backend_model is not None
def test_create_input():
inputs = task_processor.create_input(input_img, input_shape=img_shape)
assert inputs is not None
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(input_img, img_shape)
with torch.no_grad():
results = backend_model.test_step(input_dict)[0]
with TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(input_img, results, filename, 'window')
assert os.path.exists(filename)
def test_get_tensor_from_input():
assert type(task_processor.get_tensor_from_input(input)) is not dict
def test_get_partition_cfg():
with pytest.raises(NotImplementedError):
task_processor.get_partition_cfg(None)
def test_build_dataset_and_dataloader():
data = dict(
type='BasicImageDataset',
ann_file='test_ann.txt',
metainfo=dict(dataset_type='div2k', task_name='sisr'),
data_root='tests/test_codebase/test_mmagic/data',
data_prefix=dict(img='imgs', gt='imgs'),
pipeline=[
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb',
imdecode_backend='cv2'),
])
dataset = task_processor.build_dataset(dataset_cfg=data)
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader_cfg = dict(
num_workers=4,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=data)
dataloader = task_processor.build_dataloader(dataloader_cfg)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'