mmdeploy/tests/test_codebase/test_mmseg/test_mmseg_models.py
RunningLeon faf2d9c2b5
fix mmseg out_channels=1 (#2179)
* fix

* fix

* fix

* fix

* fix
2023-06-25 15:02:45 +08:00

166 lines
6.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import mmengine
import pytest
import torch
from packaging import version
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase, Task
from mmdeploy.utils.test import (WrapModel, check_backend, get_model_outputs,
get_rewrite_outputs)
try:
import_codebase(Codebase.MMSEG)
except ImportError:
pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True)
from .utils import generate_datasample # noqa: E402
from .utils import generate_mmseg_deploy_config # noqa: E402
from .utils import generate_mmseg_task_processor # noqa: E402
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
def test_encoderdecoder_predict(backend):
check_backend(backend)
deploy_cfg = generate_mmseg_deploy_config(backend.value)
task_processor = generate_mmseg_task_processor(deploy_cfg=deploy_cfg)
segmentor = task_processor.build_pytorch_model()
size = 256
inputs = torch.randn(1, 3, size, size)
data_samples = [generate_datasample(size, size)]
wrapped_model = WrapModel(segmentor, 'predict', data_samples=data_samples)
model_outputs = wrapped_model(inputs)[0].pred_sem_seg.data
rewrite_inputs = {
'inputs': inputs,
}
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
rewrite_outputs = segmentor.postprocess_result(rewrite_outputs[0],
data_samples)
rewrite_outputs = rewrite_outputs[0].pred_sem_seg.data
assert torch.allclose(model_outputs, rewrite_outputs)
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
@pytest.mark.parametrize('with_argmax,use_sigmoid', [(True, False),
(False, True)])
def test_basesegmentor_forward(backend: Backend, with_argmax: bool,
use_sigmoid: bool):
check_backend(backend)
config_path = 'tests/test_codebase/test_mmseg/data/model.py'
model_cfg = mmengine.Config.fromfile(config_path)
if use_sigmoid:
import mmseg
if version.parse(mmseg.__version__) <= version.parse('1.0.0'):
pytest.skip('ignore mmseg<=1.0.0')
model_cfg.model.decode_head.num_classes = 2
model_cfg.model.decode_head.out_channels = 1
model_cfg.model.decode_head.threshold = 0.3
deploy_cfg = generate_mmseg_deploy_config(backend.value)
deploy_cfg.codebase_config.with_argmax = with_argmax
task_processor = generate_mmseg_task_processor(
deploy_cfg=deploy_cfg, model_cfg=model_cfg)
segmentor = task_processor.build_pytorch_model()
size = 256
inputs = torch.randn(1, 3, size, size)
data_samples = [generate_datasample(size, size)]
wrapped_model = WrapModel(
segmentor, 'forward', data_samples=data_samples, mode='predict')
model_outputs = wrapped_model(inputs)[0].pred_sem_seg.data
rewrite_inputs = {
'inputs': inputs,
}
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
rewrite_outputs = rewrite_outputs[0]
if rewrite_outputs.shape[1] != 1:
rewrite_outputs = rewrite_outputs.argmax(dim=1, keepdim=True)
rewrite_outputs = rewrite_outputs.squeeze(0).to(model_outputs)
assert torch.allclose(model_outputs, rewrite_outputs)
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
def test_emamodule_forward(backend):
check_backend(backend)
from mmseg.models.decode_heads.ema_head import EMAModule
head = EMAModule(8, 2, 2, 1.0).eval()
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(
output_names=['result'], input_shape=(1, 8, 16, 16)),
codebase_config=dict(type='mmseg', task='Segmentation')))
feats = torch.randn(1, 8, 16, 16)
model_inputs = {'feats': feats}
with torch.no_grad():
model_outputs = get_model_outputs(head, 'forward', model_inputs)
wrapped_model = WrapModel(head, 'forward')
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=model_inputs,
deploy_cfg=deploy_cfg)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
rewrite_outputs = rewrite_outputs.to(model_outputs).reshape(
model_outputs.shape)
assert torch.allclose(
rewrite_outputs, model_outputs, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize('is_dynamic_shape', [True, False])
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
def test_upconvblock_forward(backend, is_dynamic_shape):
check_backend(backend)
from mmseg.models.backbones.unet import BasicConvBlock
from mmseg.models.utils import UpConvBlock
head = UpConvBlock(BasicConvBlock, 16, 8, 8).eval()
dynamic_axes = {
'x': {
0: 'b',
2: 'h',
3: 'w'
},
'skip': {
0: 'b',
2: 'h',
3: 'w'
},
'output': {
0: 'b',
2: 'h',
3: 'w'
},
} if is_dynamic_shape else None
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(
input_names=['x', 'skip'],
output_names=['output'],
dynamic_axes=dynamic_axes),
codebase_config=dict(
type=Codebase.MMSEG.value, task=Task.SEGMENTATION.value)))
x = torch.randn(1, 16, 16, 16)
skip = torch.randn(1, 8, 32, 32)
model_inputs = {'x': x, 'skip': skip}
with torch.no_grad():
model_outputs = get_model_outputs(head, 'forward', model_inputs)
wrapped_model = WrapModel(head, 'forward')
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=model_inputs,
deploy_cfg=deploy_cfg)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
rewrite_outputs = rewrite_outputs.to(model_outputs).reshape(
model_outputs.shape)
assert torch.allclose(
rewrite_outputs, model_outputs, rtol=1e-03, atol=1e-05)