194 lines
7.0 KiB
Markdown
194 lines
7.0 KiB
Markdown
# MMAction2 模型部署
|
||
|
||
- [MMAction2 模型部署](#mmaction2-模型部署)
|
||
- [安装](#安装)
|
||
- [安装 mmaction2](#安装-mmaction2)
|
||
- [安装 mmdeploy](#安装-mmdeploy)
|
||
- [模型转换](#模型转换)
|
||
- [视频分类任务模型转换](#视频分类任务模型转换)
|
||
- [模型规范](#模型规范)
|
||
- [模型推理](#模型推理)
|
||
- [后端模型推理](#后端模型推理)
|
||
- [SDK 模型推理](#sdk-模型推理)
|
||
- [视频分类 SDK 模型推理](#视频分类-sdk-模型推理)
|
||
- [模型支持列表](#模型支持列表)
|
||
|
||
______________________________________________________________________
|
||
|
||
[MMAction2](https://github.com/open-mmlab/mmaction2)是一款基于 PyTorch 的视频理解开源工具箱,是[OpenMMLab](https://openmmlab.com)项目的成员之一。
|
||
|
||
## 安装
|
||
|
||
### 安装 mmaction2
|
||
|
||
请参考[官网安装指南](https://github.com/open-mmlab/mmaction2/tree/dev-1.x#installation).
|
||
|
||
### 安装 mmdeploy
|
||
|
||
mmdeploy 有以下几种安装方式:
|
||
|
||
**方式一:** 安装预编译包
|
||
|
||
通过此[链接](https://github.com/open-mmlab/mmdeploy/releases)获取最新的预编译包
|
||
|
||
**方式二:** 一键式脚本安装
|
||
|
||
如果部署平台是 **Ubuntu 18.04 及以上版本**, 请参考[脚本安装说明](../01-how-to-build/build_from_script.md),完成安装过程。
|
||
比如,以下命令可以安装 mmdeploy 以及配套的推理引擎——`ONNX Runtime`.
|
||
|
||
```shell
|
||
git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
|
||
cd mmdeploy
|
||
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
||
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
||
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
||
```
|
||
|
||
**方式三:** 源码安装
|
||
|
||
在方式一、二都满足不了的情况下,请参考[源码安装说明](../01-how-to-build/build_from_source.md) 安装 mmdeploy 以及所需推理引擎。
|
||
|
||
## 模型转换
|
||
|
||
你可以使用 [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) 把 mmaction2 模型一键式转换为推理后端模型。
|
||
该工具的详细使用说明请参考[这里](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
|
||
|
||
转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署[配置文件](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmaction)。
|
||
文件的命名模式是:
|
||
|
||
```
|
||
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
|
||
```
|
||
|
||
其中:
|
||
|
||
- **{task}:** mmaction2 中的任务
|
||
- **{backend}:** 推理后端名称。比如,onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等
|
||
- **{precision}:** 推理精度。比如,fp16、int8。不填表示 fp32
|
||
- **{static | dynamic}:** 动态、静态 shape
|
||
- **{shape}:** 模型输入的 shape 或者 shape 范围
|
||
- **{2d/3d}:** 表示模型的类别
|
||
|
||
以下,我们将演示如何把视频分类任务中 `tsn` 模型转换为 onnx 模型。
|
||
|
||
### 视频分类任务模型转换
|
||
|
||
```shell
|
||
cd mmdeploy
|
||
|
||
# download tsn model from mmaction2 model zoo
|
||
mim download mmaction2 --config tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb --dest .
|
||
|
||
# convert mmaction2 model to onnxruntime model with dynamic shape
|
||
python tools/deploy.py \
|
||
configs/mmaction/video-recognition/video-recognition_2d_onnxruntime_static.py \
|
||
tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb \
|
||
tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth \
|
||
tests/data/arm_wrestling.mp4 \
|
||
--work-dir mmdeploy_models/mmaction/tsn/ort \
|
||
--device cpu \
|
||
--show \
|
||
--dump-info
|
||
```
|
||
|
||
## 模型规范
|
||
|
||
在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 `--work-dir` 指定的路路径下。
|
||
|
||
上例中的`mmdeploy_models/mmaction/tsn/ort`,结构如下:
|
||
|
||
```
|
||
mmdeploy_models/mmaction/tsn/ort
|
||
├── deploy.json
|
||
├── detail.json
|
||
├── end2end.onnx
|
||
└── pipeline.json
|
||
```
|
||
|
||
重要的是:
|
||
|
||
- **end2end.onnx**: 推理引擎文件。可用 ONNX Runtime 推理
|
||
- \***.json**: mmdeploy SDK 推理所需的 meta 信息
|
||
|
||
整个文件夹被定义为**mmdeploy SDK model**。换言之,**mmdeploy SDK model**既包括推理引擎,也包括推理 meta 信息。
|
||
|
||
## 模型推理
|
||
|
||
### 后端模型推理
|
||
|
||
以上述模型转换后的 `end2end.onnx` 为例,你可以使用如下代码进行推理:
|
||
|
||
```python
|
||
from mmdeploy.apis.utils import build_task_processor
|
||
from mmdeploy.utils import get_input_shape, load_config
|
||
import numpy as np
|
||
import torch
|
||
|
||
deploy_cfg = 'configs/mmaction/video-recognition/video-recognition_2d_onnxruntime_static.py'
|
||
model_cfg = 'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb'
|
||
device = 'cpu'
|
||
backend_model = ['./mmdeploy_models/mmaction2/tsn/ort/end2end.onnx']
|
||
image = 'tests/data/arm_wrestling.mp4'
|
||
|
||
# read deploy_cfg and model_cfg
|
||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||
|
||
# build task and backend model
|
||
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
||
model = task_processor.build_backend_model(backend_model)
|
||
|
||
# process input image
|
||
input_shape = get_input_shape(deploy_cfg)
|
||
model_inputs, _ = task_processor.create_input(image, input_shape)
|
||
|
||
# do model inference
|
||
with torch.no_grad():
|
||
result = model.test_step(model_inputs)
|
||
|
||
# show top5-results
|
||
pred_scores = result[0].pred_scores.item.tolist()
|
||
top_index = np.argsort(pred_scores)[::-1]
|
||
for i in range(5):
|
||
index = top_index[i]
|
||
print(index, pred_scores[index])
|
||
```
|
||
|
||
### SDK 模型推理
|
||
|
||
你也可以参考如下代码,对 SDK model 进行推理:
|
||
|
||
#### 视频分类 SDK 模型推理
|
||
|
||
```python
|
||
from mmdeploy_python import VideoRecognizer
|
||
import cv2
|
||
|
||
# refer to demo/python/video_recognition.py
|
||
# def SampleFrames(cap, clip_len, frame_interval, num_clips):
|
||
# ...
|
||
|
||
cap = cv2.VideoCapture('tests/data/arm_wrestling.mp4')
|
||
|
||
clips, info = SampleFrames(cap, 1, 1, 25)
|
||
|
||
# create a recognizer
|
||
recognizer = VideoRecognizer(model_path='./mmdeploy_models/mmaction/tsn/ort', device_name='cpu', device_id=0)
|
||
# perform inference
|
||
result = recognizer(clips, info)
|
||
# show inference result
|
||
for label_id, score in result:
|
||
print(label_id, score)
|
||
```
|
||
|
||
除了python API,mmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。
|
||
你可以参考[样例](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo)学习其他语言接口的使用方法。
|
||
|
||
> mmaction2 的 C#,Java接口待开发
|
||
|
||
## 模型支持列表
|
||
|
||
| Model | TorchScript | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO |
|
||
| :-------------------------------------------------------------------------------------------- | :---------: | :----------: | :------: | :--: | :---: | :------: |
|
||
| [TSN](https://github.com/open-mmlab/mmaction2/tree/dev-1.x/configs/recognition/tsn) | N | Y | Y | N | N | N |
|
||
| [SlowFast](https://github.com/open-mmlab/mmaction2/tree/dev-1.x/configs/recognition/slowfast) | N | Y | Y | N | N | N |
|