mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* checkout qq group qrcode * update the cover image * update build doc * reorganize chapters * update readme * remove index of build on different platforms in readthedocs * update benchmark * update get started document in Chinese based on the prebuild package * update get_started * re-style benchmark * update get_started in zh_cn * update get_started in english * update get_started in english * update get_started in english * update get_started doc * update according to reviewer comments * update linker ci * fix(.github/scripts/check_doc_linker.py): skip code block * specify PYTHONPATH * update get_started * update diagram * rename some documents * fix according to reviewer comments Co-authored-by: tpoisonooo <khj.application@aliyun.com>
2.3 KiB
2.3 KiB
MMRotate Support
MMRotate is an open-source toolbox for rotated object detection based on PyTorch. It is a part of the OpenMMLab project.
MMRotate installation tutorial
Please refer to official installation guide to install the codebase.
MMRotate models support
Model | Task | ONNX Runtime | TensorRT | NCNN | PPLNN | OpenVINO | Model config |
---|---|---|---|---|---|---|---|
RotatedRetinaNet | RotatedDetection | Y | Y | N | N | N | config |
Oriented RCNN | RotatedDetection | Y | N | N | N | N | config |
Example
# convert ort
python tools/deploy.py \
configs/mmrotate/rotated-detection_onnxruntime_dynamic.py \
$MMROTATE_DIR/configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le135.py \
$MMROTATE_DIR/checkpoints/rotated_retinanet_obb_r50_fpn_1x_dota_le135-e4131166.pth \
$MMROTATE_DIR/demo/demo.jpg \
--work-dir work-dirs/mmrotate/rotated_retinanet/ort \
--device cpu
# compute metric
python tools/test.py \
configs/mmrotate/rotated-detection_onnxruntime_dynamic.py \
$MMROTATE_DIR/configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le135.py \
--model work-dirs/mmrotate/rotated_retinanet/ort/end2end.onnx \
--metrics mAP
# generate submit file
python tools/test.py \
configs/mmrotate/rotated-detection_onnxruntime_dynamic.py \
$MMROTATE_DIR/configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le135.py \
--model work-dirs/mmrotate/rotated_retinanet/ort/end2end.onnx \
--format-only \
--metric-options submission_dir=work-dirs/mmrotate/rotated_retinanet/ort/Task1_results
Note
- Usually, mmrotate models need some extra information for the input image, but we can't get it directly. So, when exporting the model, you can use
$MMROTATE_DIR/demo/demo.jpg
as input.