AllentDan a2f82874bb
Support mmocr:dev-1.x (#904)
* init

* update UT

* fix UT except SAR

* update to latest 2.0

* fix ncnn UT

* export info
2022-09-01 15:11:43 +08:00

65 lines
2.0 KiB
Python
Executable File

# Copyright (c) OpenMMLab. All rights reserved.
model = dict(
type='mmocr.DBNet',
backbone=dict(
type='mmdet.ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe'),
neck=dict(
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
det_head=dict(
type='DBHead',
in_channels=256,
module_loss=dict(type='DBModuleLoss'),
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
data_preprocessor=dict(
type='mmocr.TextDetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32))
dataset_type = 'IcdarDataset'
data_root = 'tests/test_codebase/test_mmocr/data'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset',
datasets=[
dict(
type='OCRDataset',
data_root='data/det/icdar2015',
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
],
pipeline=[
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='mmocr.PackTextDetInputs',
meta_keys=('ori_shape', 'img_shape', 'scale_factor',
'instances'))
]))
visualizer = dict(type='TextDetLocalVisualizer', name='visualizer')
default_scope = 'mmocr'