lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

119 lines
5.2 KiB
Plaintext

// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
// modify from
// https://github.com/NVIDIA/TensorRT/tree/master/plugin/batchedNMSPlugin
#include <vector>
#include "kernel.h"
#include "trt_plugin_helper.hpp"
template <typename T_BBOX, typename T_SCORE, unsigned nthds_per_cta>
__launch_bounds__(nthds_per_cta) __global__
void gatherNMSOutputs_kernel(const bool shareLocation, const int numImages,
const int numPredsPerClass, const int numClasses, const int topK,
const int keepTopK, const int *indices, const T_SCORE *scores,
const T_BBOX *bboxData, T_BBOX *nmsedDets, int *nmsedLabels,
bool clipBoxes) {
if (keepTopK > topK) return;
for (int i = blockIdx.x * nthds_per_cta + threadIdx.x; i < numImages * keepTopK;
i += gridDim.x * nthds_per_cta) {
const int imgId = i / keepTopK;
const int detId = i % keepTopK;
const int offset = imgId * numClasses * topK;
const int index = indices[offset + detId];
const T_SCORE score = scores[offset + detId];
if (index == -1) {
nmsedLabels[i] = -1;
nmsedDets[i * 5] = 0;
nmsedDets[i * 5 + 1] = 0;
nmsedDets[i * 5 + 2] = 0;
nmsedDets[i * 5 + 3] = 0;
nmsedDets[i * 5 + 4] = 0;
} else {
const int bboxOffset =
imgId * (shareLocation ? numPredsPerClass : (numClasses * numPredsPerClass));
const int bboxId =
((shareLocation ? (index % numPredsPerClass) : index % (numClasses * numPredsPerClass)) +
bboxOffset) *
4;
nmsedLabels[i] = (index % (numClasses * numPredsPerClass)) / numPredsPerClass; // label
// clipped bbox xmin
nmsedDets[i * 5] =
clipBoxes ? max(min(bboxData[bboxId], T_BBOX(1.)), T_BBOX(0.)) : bboxData[bboxId];
// clipped bbox ymin
nmsedDets[i * 5 + 1] =
clipBoxes ? max(min(bboxData[bboxId + 1], T_BBOX(1.)), T_BBOX(0.)) : bboxData[bboxId + 1];
// clipped bbox xmax
nmsedDets[i * 5 + 2] =
clipBoxes ? max(min(bboxData[bboxId + 2], T_BBOX(1.)), T_BBOX(0.)) : bboxData[bboxId + 2];
// clipped bbox ymax
nmsedDets[i * 5 + 3] =
clipBoxes ? max(min(bboxData[bboxId + 3], T_BBOX(1.)), T_BBOX(0.)) : bboxData[bboxId + 3];
nmsedDets[i * 5 + 4] = score;
}
}
}
template <typename T_BBOX, typename T_SCORE>
pluginStatus_t gatherNMSOutputs_gpu(cudaStream_t stream, const bool shareLocation,
const int numImages, const int numPredsPerClass,
const int numClasses, const int topK, const int keepTopK,
const void *indices, const void *scores, const void *bboxData,
void *nmsedDets, void *nmsedLabels, bool clipBoxes) {
const int BS = 32;
const int GS = 32;
gatherNMSOutputs_kernel<T_BBOX, T_SCORE, BS><<<GS, BS, 0, stream>>>(
shareLocation, numImages, numPredsPerClass, numClasses, topK, keepTopK, (int *)indices,
(T_SCORE *)scores, (T_BBOX *)bboxData, (T_BBOX *)nmsedDets, (int *)nmsedLabels, clipBoxes);
CSC(cudaGetLastError(), STATUS_FAILURE);
return STATUS_SUCCESS;
}
// gatherNMSOutputs LAUNCH CONFIG {{{
typedef pluginStatus_t (*nmsOutFunc)(cudaStream_t, const bool, const int, const int, const int,
const int, const int, const void *, const void *, const void *,
void *, void *, bool);
struct nmsOutLaunchConfig {
DataType t_bbox;
DataType t_score;
nmsOutFunc function;
nmsOutLaunchConfig(DataType t_bbox, DataType t_score) : t_bbox(t_bbox), t_score(t_score) {}
nmsOutLaunchConfig(DataType t_bbox, DataType t_score, nmsOutFunc function)
: t_bbox(t_bbox), t_score(t_score), function(function) {}
bool operator==(const nmsOutLaunchConfig &other) {
return t_bbox == other.t_bbox && t_score == other.t_score;
}
};
using nvinfer1::DataType;
static std::vector<nmsOutLaunchConfig> nmsOutFuncVec;
bool nmsOutputInit() {
nmsOutFuncVec.push_back(
nmsOutLaunchConfig(DataType::kFLOAT, DataType::kFLOAT, gatherNMSOutputs_gpu<float, float>));
return true;
}
static bool initialized = nmsOutputInit();
//}}}
pluginStatus_t gatherNMSOutputs(cudaStream_t stream, const bool shareLocation, const int numImages,
const int numPredsPerClass, const int numClasses, const int topK,
const int keepTopK, const DataType DT_BBOX, const DataType DT_SCORE,
const void *indices, const void *scores, const void *bboxData,
void *nmsedDets, void *nmsedLabels, bool clipBoxes) {
nmsOutLaunchConfig lc = nmsOutLaunchConfig(DT_BBOX, DT_SCORE);
for (unsigned i = 0; i < nmsOutFuncVec.size(); ++i) {
if (lc == nmsOutFuncVec[i]) {
DEBUG_PRINTF("gatherNMSOutputs kernel %d\n", i);
return nmsOutFuncVec[i].function(stream, shareLocation, numImages, numPredsPerClass,
numClasses, topK, keepTopK, indices, scores, bboxData,
nmsedDets, nmsedLabels, clipBoxes);
}
}
return STATUS_BAD_PARAM;
}