lzhangzz a494a6f6ff
[SDK] sync changes according to performance benchmarks (#297)
* sync SDK changes according to performance benchmarks

* fix end-of-file lint

* fix clang-format issue

* fix clang-format by adding 'clang-format off'

* remove useless casts

* remove 'data' argument of 'operator()'

* change 'Tensor2Img' to 'TensorToImg' according to spec

* correct tensor's name according spec

Co-authored-by: lvhan028 <lvhan_028@163.com>
2021-12-16 13:51:22 +08:00

104 lines
3.4 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "pad.h"
#include "archive/json_archive.h"
using namespace std;
namespace mmdeploy {
PadImpl::PadImpl(const Value& args) : TransformImpl(args) {
arg_.size[0] = arg_.size[1] = 0;
if (args.contains("size") && args["size"].is_number_integer()) {
arg_.size[0] = arg_.size[1] = (args["size"].get<int>());
}
if (args.contains("size") && args["size"].is_array()) {
if (args["size"].size() != 2) {
throw std::invalid_argument("the length of size should be 2");
}
arg_.size[0] = args["size"][0].get<int>();
arg_.size[1] = args["size"][1].get<int>();
}
arg_.size_divisor = args.value("size_divisor", 1);
arg_.pad_val = args.value("pad_val", 0.0f);
arg_.pad_to_square = args.value("pad_to_square", false);
arg_.padding_mode = args.value("padding_mode", std::string("constant"));
}
Result<Value> PadImpl::Process(const Value& input) {
DEBUG("input: {}", to_json(input).dump(2));
Value output = input;
auto img_fields = GetImageFields(input);
for (auto& key : img_fields) {
Tensor output_tensor;
auto tensor = input[key].get<Tensor>();
assert(tensor.desc().shape.size() == 4);
assert(tensor.desc().shape[0] == 1);
assert(tensor.desc().shape[3] == 3 or tensor.desc().shape[3] == 1);
int height = tensor.desc().shape[1];
int width = tensor.desc().shape[2];
if (arg_.pad_to_square) {
int max_size = std::max(tensor.desc().shape[1], tensor.desc().shape[2]);
std::array padding{0, 0, max_size - width, max_size - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_fixed_size"].push_back(max_size);
output["pad_fixed_size"].push_back(max_size);
} else if (arg_.size_divisor != 1) {
auto pad_h = (height + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
auto pad_w = (width + arg_.size_divisor - 1) / arg_.size_divisor * arg_.size_divisor;
std::array padding{0, 0, pad_w - width, pad_h - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_size_divisor"] = arg_.size_divisor;
output["pad_fixed_size"].push_back(pad_h);
output["pad_fixed_size"].push_back(pad_w);
} else {
std::array padding{0, 0, arg_.size[1] - width, arg_.size[0] - height};
OUTCOME_TRY(output_tensor, PadImage(tensor, padding));
output["pad_fixed_size"].push_back(arg_.size[0]);
output["pad_fixed_size"].push_back(arg_.size[1]);
}
output[key] = output_tensor;
for (auto& v : output_tensor.desc().shape) {
output["pad_shape"].push_back(v);
}
}
DEBUG("output: {}", to_json(output).dump(2));
return output;
}
Pad::Pad(const Value& args, int version) : Transform(args) {
auto impl_creator = Registry<PadImpl>::Get().GetCreator(specified_platform_, version);
if (nullptr == impl_creator) {
ERROR("'Pad' is not supported on '{}' platform", specified_platform_);
throw std::domain_error("'Pad' is not supported on specified platform");
}
impl_ = impl_creator->Create(args);
}
class PadCreator : public Creator<Transform> {
public:
const char* GetName() const override { return "Pad"; }
int GetVersion() const override { return version_; }
ReturnType Create(const Value& args) override { return make_unique<Pad>(args, version_); }
private:
int version_{1};
};
REGISTER_MODULE(Transform, PadCreator);
} // namespace mmdeploy