mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* minor changes * support windows * fix GCC build * fix lint * reformat * fix Windows build * fix GCC build * search backend ops for onnxruntime * fix lint * fix lint * code clean-up * code clean-up * fix clang build * fix trt support * fix cmake for ncnn * fix cmake for openvino * fix SDK Python API * handle ops for other backends (ncnn, trt) * handle SDK Python API library location * robustify linkage * fix cuda * minor fix for openvino & ncnn * use CMAKE_CUDA_ARCHITECTURES if set * fix cuda preprocessor * fix misc * fix pplnn & pplcv, drop support for pplcv<0.6.0 * robustify cmake * update build.md (#2) * build dynamic modules as module library & fix demo (partially) * fix candidate path for mmdeploy_python * move "enable CUDA" to cmake config for demo * refine demo cmake * add comment * fix ubuntu build * revert docs/en/build.md * fix C API * fix lint * Windows build doc (#3) * check in docs related to mmdeploy build on windows * update build guide on windows platform * update build guide on windows platform * make path of thirdparty libraries consistent * make path consistency * correct build command for custom ops * correct build command for sdk * update sdk build instructions * update doc * correct build command * fix lint * correct build command and fix lint Co-authored-by: lvhan <lvhan@pjlab.org> * trailing whitespace (#4) * minor fix * fix sr sdk model * fix type deduction * fix cudaFree after driver shutting down * update ppl.cv installation warning (#5) * fix device allocator threshold & fix lint * update doc (#6) * update ppl.cv installation warning * missing 'git clone' Co-authored-by: chenxin <chenxin2@sensetime.com> Co-authored-by: zhangli <zhangli@sensetime.com> Co-authored-by: lvhan028 <lvhan_028@163.com> Co-authored-by: lvhan <lvhan@pjlab.org>
88 lines
2.7 KiB
C++
88 lines
2.7 KiB
C++
#include <fstream>
|
|
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <string>
|
|
|
|
#include "detector.h"
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc != 4) {
|
|
fprintf(stderr, "usage:\n object_detection device_name model_path image_path\n");
|
|
return 1;
|
|
}
|
|
auto device_name = argv[1];
|
|
auto model_path = argv[2];
|
|
auto image_path = argv[3];
|
|
cv::Mat img = cv::imread(image_path);
|
|
if (!img.data) {
|
|
fprintf(stderr, "failed to load image: %s\n", image_path);
|
|
return 1;
|
|
}
|
|
|
|
mm_handle_t detector{};
|
|
int status{};
|
|
status = mmdeploy_detector_create_by_path(model_path, device_name, 0, &detector);
|
|
if (status != MM_SUCCESS) {
|
|
fprintf(stderr, "failed to create detector, code: %d\n", (int)status);
|
|
return 1;
|
|
}
|
|
|
|
mm_mat_t mat{img.data, img.rows, img.cols, 3, MM_BGR, MM_INT8};
|
|
|
|
mm_detect_t *bboxes{};
|
|
int *res_count{};
|
|
status = mmdeploy_detector_apply(detector, &mat, 1, &bboxes, &res_count);
|
|
if (status != MM_SUCCESS) {
|
|
fprintf(stderr, "failed to apply detector, code: %d\n", (int)status);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stdout, "bbox_count=%d\n", *res_count);
|
|
|
|
for (int i = 0; i < *res_count; ++i) {
|
|
const auto &box = bboxes[i].bbox;
|
|
const auto &mask = bboxes[i].mask;
|
|
|
|
fprintf(stdout, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n",
|
|
i, box.left, box.top, box.right, box.bottom, bboxes[i].label_id, bboxes[i].score);
|
|
|
|
// skip detections with invalid bbox size (bbox height or width < 1)
|
|
if ((box.right - box.left) < 1 || (box.bottom - box.top) < 1) {
|
|
continue;
|
|
}
|
|
|
|
// skip detections less than specified score threshold
|
|
if (bboxes[i].score < 0.1) {
|
|
continue;
|
|
}
|
|
|
|
// generate mask overlay if model exports masks
|
|
if (mask != nullptr) {
|
|
fprintf(stdout, "mask %d, height=%d, width=%d\n", i, mask->height, mask->width);
|
|
|
|
cv::Mat imgMask(mask->height, mask->width, CV_8UC1, &mask->data[0]);
|
|
auto x0 = std::max(std::floor(box.left) - 1, 0.f);
|
|
auto y0 = std::max(std::floor(box.top) - 1, 0.f);
|
|
cv::Rect roi((int)x0, (int)y0, mask->width, mask->height);
|
|
|
|
// split the RGB channels, overlay mask to a specific color channel
|
|
cv::Mat ch[3];
|
|
split(img, ch);
|
|
int col = 0; // int col = i % 3;
|
|
cv::bitwise_or(imgMask, ch[col](roi), ch[col](roi));
|
|
merge(ch, 3, img);
|
|
}
|
|
|
|
cv::rectangle(img, cv::Point{(int)box.left, (int)box.top},
|
|
cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
|
|
}
|
|
|
|
cv::imwrite("output_detection.png", img);
|
|
|
|
mmdeploy_detector_release_result(bboxes, res_count, 1);
|
|
|
|
mmdeploy_detector_destroy(detector);
|
|
|
|
return 0;
|
|
}
|