67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
# For nuScenes dataset, we usually evaluate the model at the end of training.
|
|
# Since the models are trained by 24 epochs by default, we set evaluation
|
|
# interval to be 20. Please change the interval accordingly if you do not
|
|
# use a default schedule.
|
|
# optimizer
|
|
lr = 1e-4
|
|
# This schedule is mainly used by models on nuScenes dataset
|
|
# max_norm=10 is better for SECOND
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01),
|
|
clip_grad=dict(max_norm=35, norm_type=2))
|
|
# learning rate
|
|
param_scheduler = [
|
|
# learning rate scheduler
|
|
# During the first 8 epochs, learning rate increases from 0 to lr * 10
|
|
# during the next 12 epochs, learning rate decreases from lr * 10 to
|
|
# lr * 1e-4
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=8,
|
|
eta_min=lr * 10,
|
|
begin=0,
|
|
end=8,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=12,
|
|
eta_min=lr * 1e-4,
|
|
begin=8,
|
|
end=20,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
# momentum scheduler
|
|
# During the first 8 epochs, momentum increases from 0 to 0.85 / 0.95
|
|
# during the next 12 epochs, momentum increases from 0.85 / 0.95 to 1
|
|
dict(
|
|
type='CosineAnnealingMomentum',
|
|
T_max=8,
|
|
eta_min=0.85 / 0.95,
|
|
begin=0,
|
|
end=8,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
type='CosineAnnealingMomentum',
|
|
T_max=12,
|
|
eta_min=1,
|
|
begin=8,
|
|
end=20,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True)
|
|
]
|
|
|
|
# runtime settings
|
|
train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=20)
|
|
val_cfg = dict()
|
|
test_cfg = dict()
|
|
|
|
# Default setting for scaling LR automatically
|
|
# - `enable` means enable scaling LR automatically
|
|
# or not by default.
|
|
# - `base_batch_size` = (8 GPUs) x (4 samples per GPU).
|
|
auto_scale_lr = dict(enable=False, base_batch_size=32)
|