mmdeploy/tests/test_codebase/test_mmrotate/test_rotated_detection.py
q.yao 2afbb9945e
[Enhancement] MMRotate 1.x support (#1401)
* wip

* update twostage detector support

* fix unit test

* sdk wip

* comment

* refactor export info

* fix

* support roi trans

* update rotate.yml

* clear model.py, support torch1.13
2022-12-12 19:27:03 +08:00

114 lines
3.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
import numpy as np
import pytest
import torch
from mmengine import Config
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import SwitchBackendWrapper
try:
import_codebase(Codebase.MMROTATE)
except ImportError:
pytest.skip(
f'{Codebase.MMROTATE} is not installed.', allow_module_level=True)
model_cfg_path = 'tests/test_codebase/test_mmrotate/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000)),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['dets', 'labels'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = None
img_shape = (32, 32)
img = np.random.rand(*img_shape, 3)
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
def test_build_pytorch_model():
from mmdet.models import BaseDetector
model = task_processor.build_pytorch_model(None)
assert isinstance(model, BaseDetector)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'dets': torch.rand(1, 10, 6),
'labels': torch.randint(1, 10, (1, 10))
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
from mmdeploy.codebase.mmrotate.deploy.rotated_detection_model import \
End2EndModel
assert isinstance(backend_model, End2EndModel)
@pytest.mark.parametrize('device', ['cpu'])
def test_create_input(device):
original_device = task_processor.device
task_processor.device = device
inputs = task_processor.create_input(img, input_shape=img_shape)
assert len(inputs) == 2
task_processor.device = original_device
def test_visualize(backend_model):
input_dict, _ = task_processor.create_input(img, input_shape=img_shape)
results = backend_model.test_step(input_dict)[0]
with TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(img, results, filename, 'window')
assert os.path.exists(filename)
def test_get_partition_cfg():
with pytest.raises(NotImplementedError):
_ = task_processor.get_partition_cfg(partition_type='')
def test_build_dataset_and_dataloader():
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg.test_dataloader.dataset)
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader_cfg = task_processor.model_cfg.test_dataloader
dataloader = task_processor.build_dataloader(dataloader_cfg)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'