mmdeploy/tests/test_codebase/test_mmseg/test_segmentation.py

162 lines
5.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import Any
import mmcv
import pytest
import torch
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import SwitchBackendWrapper
try:
import_codebase(Codebase.MMSEG)
except ImportError:
pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True)
from .utils import generate_datasample # noqa: E402
from .utils import generate_mmseg_deploy_config # noqa: E402
model_cfg_path = 'tests/test_codebase/test_mmseg/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = generate_mmseg_deploy_config()
task_processor = None
img_shape = (32, 32)
tiger_img_path = 'tests/data/tiger.jpeg'
img = mmcv.imread(tiger_img_path)
img = mmcv.imresize(img, img_shape)
@pytest.fixture(autouse=True)
def init_task_processor():
global task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
@pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0])
def test_build_pytorch_model(from_mmrazor: Any):
from mmseg.models.segmentors.base import BaseSegmentor
if from_mmrazor is False:
_task_processor = task_processor
else:
_model_cfg_path = 'tests/test_codebase/test_mmseg/data/' \
'mmrazor_model.py'
_model_cfg = load_config(_model_cfg_path)[0]
_model_cfg.algorithm.architecture.model.type = 'mmseg.EncoderDecoder'
_model_cfg.algorithm.distiller.teacher.type = 'mmseg.EncoderDecoder'
_deploy_cfg = copy.deepcopy(deploy_cfg)
_deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor
_task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu')
if not isinstance(from_mmrazor, bool):
with pytest.raises(
TypeError,
match='`from_mmrazor` attribute must be '
'boolean type! '
f'but got: {from_mmrazor}'):
_ = _task_processor.from_mmrazor
return
assert from_mmrazor == _task_processor.from_mmrazor
if from_mmrazor:
pytest.importorskip('mmrazor', reason='mmrazor is not installed.')
model = _task_processor.build_pytorch_model(None)
assert isinstance(model, BaseSegmentor)
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, 1, *img_shape),
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
img_path = 'tests/data/tiger.jpeg'
data_preprocessor = task_processor.build_data_preprocessor()
inputs = task_processor.create_input(
img_path, input_shape=img_shape, data_preprocessor=data_preprocessor)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_build_data_preprocessor():
from mmseg.models import SegDataPreProcessor
data_preprocessor = task_processor.build_data_preprocessor()
assert isinstance(data_preprocessor, SegDataPreProcessor)
def test_get_visualizer():
from mmseg.visualization import SegLocalVisualizer
tmp_dir = TemporaryDirectory().name
visualizer = task_processor.get_visualizer('ort', tmp_dir)
assert isinstance(visualizer, SegLocalVisualizer)
def test_get_tensort_from_input():
data = torch.rand(3, 4, 5)
input_data = {'inputs': data}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, data)
def test_get_partition_cfg():
try:
_ = task_processor.get_partition_cfg(partition_type='')
except NotImplementedError:
pass
def test_build_dataset_and_dataloader():
from torch.utils.data import DataLoader, Dataset
val_dataloader = model_cfg['val_dataloader']
dataset = task_processor.build_dataset(
dataset_cfg=val_dataloader['dataset'])
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader = task_processor.build_dataloader(val_dataloader)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_build_test_runner(backend_model):
from mmdeploy.codebase.base.runner import DeployTestRunner
temp_dir = TemporaryDirectory().name
runner = task_processor.build_test_runner(backend_model, temp_dir)
assert isinstance(runner, DeployTestRunner)
def test_visualize():
h, w = img.shape[:2]
datasample = generate_datasample(h, w)
output_file = NamedTemporaryFile(suffix='.jpg').name
task_processor.visualize(
img, datasample, output_file, show_result=False, window_name='test')
def test_get_preprocess():
process = task_processor.get_preprocess()
assert process is not None
def test_get_postprocess():
process = task_processor.get_postprocess()
assert isinstance(process, dict)
def test_get_model_name():
name = task_processor.get_model_name()
assert isinstance(name, str)