52 lines
1.6 KiB
Python
52 lines
1.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
from math import cos, sin
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from mmdeploy_runtime import RotatedDetector
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='show how to use sdk python api')
|
|
parser.add_argument('device_name', help='name of device, cuda or cpu')
|
|
parser.add_argument(
|
|
'model_path', help='path of SDK model dumped by model converter')
|
|
parser.add_argument('image_path', help='path of an image')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
img = cv2.imread(args.image_path)
|
|
detector = RotatedDetector(
|
|
model_path=args.model_path, device_name=args.device_name, device_id=0)
|
|
rbboxes, labels = detector(img)
|
|
|
|
indices = [i for i in range(len(rbboxes))]
|
|
for index, rbbox, label_id in zip(indices, rbboxes, labels):
|
|
[cx, cy, w, h, angle], score = rbbox[0:5], rbbox[-1]
|
|
if score < 0.1:
|
|
continue
|
|
[wx, wy, hx, hy] = \
|
|
0.5 * np.array([w, w, -h, h]) * \
|
|
np.array([cos(angle), sin(angle), sin(angle), cos(angle)])
|
|
points = np.array([[[int(cx - wx - hx),
|
|
int(cy - wy - hy)],
|
|
[int(cx + wx - hx),
|
|
int(cy + wy - hy)],
|
|
[int(cx + wx + hx),
|
|
int(cy + wy + hy)],
|
|
[int(cx - wx + hx),
|
|
int(cy - wy + hy)]]])
|
|
cv2.drawContours(img, points, -1, (0, 255, 0), 2)
|
|
|
|
cv2.imwrite('output_detection.png', img)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|