mmdeploy/tests/test_codebase/test_mmseg/test_segmentation_model.py

115 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import mmengine
import numpy as np
import pytest
import torch
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase
from mmdeploy.utils.test import SwitchBackendWrapper, backend_checker
try:
import_codebase(Codebase.MMSEG)
except ImportError:
pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True)
from .utils import generate_datasample # noqa: E402
from .utils import generate_mmseg_deploy_config # noqa: E402
NUM_CLASS = 19
IMAGE_SIZE = 32
@backend_checker(Backend.ONNXRUNTIME)
class TestEnd2EndModel:
@classmethod
def setup_class(cls):
# force add backend wrapper regardless of plugins
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
cls.wrapper = SwitchBackendWrapper(ORTWrapper)
cls.outputs = {
'output': torch.rand(1, 1, IMAGE_SIZE, IMAGE_SIZE),
}
cls.wrapper.set(outputs=cls.outputs)
deploy_cfg = generate_mmseg_deploy_config()
from mmdeploy.codebase.mmseg.deploy.segmentation_model import \
End2EndModel
cls.end2end_model = End2EndModel(
Backend.ONNXRUNTIME, [''], device='cpu', deploy_cfg=deploy_cfg)
@classmethod
def teardown_class(cls):
cls.wrapper.recover()
def test_forward(self):
from mmseg.structures import SegDataSample
imgs = torch.rand(1, 3, IMAGE_SIZE, IMAGE_SIZE)
data_samples = [generate_datasample(IMAGE_SIZE, IMAGE_SIZE)]
results = self.end2end_model.forward(imgs, data_samples)
assert len(results) == 1
assert isinstance(results[0], SegDataSample)
@backend_checker(Backend.RKNN)
class TestRKNNModel:
@classmethod
def setup_class(cls):
# force add backend wrapper regardless of plugins
import mmdeploy.backend.rknn as rknn_apis
from mmdeploy.backend.rknn import RKNNWrapper
rknn_apis.__dict__.update({'RKNNWrapper': RKNNWrapper})
# simplify backend inference
cls.wrapper = SwitchBackendWrapper(RKNNWrapper)
cls.outputs = [torch.rand(1, 19, IMAGE_SIZE, IMAGE_SIZE)]
cls.wrapper.set(outputs=cls.outputs)
deploy_cfg = mmengine.Config({
'onnx_config': {
'output_names': ['outputs']
},
'backend_config': {
'common_config': {}
}
})
from mmdeploy.codebase.mmseg.deploy.segmentation_model import RKNNModel
class_names = ['' for i in range(NUM_CLASS)]
palette = np.random.randint(0, 255, size=(NUM_CLASS, 3))
cls.rknn_model = RKNNModel(
Backend.RKNN, [''],
device='cpu',
class_names=class_names,
palette=palette,
deploy_cfg=deploy_cfg)
def test_forward_test(self):
imgs = torch.rand(2, 3, IMAGE_SIZE, IMAGE_SIZE)
results = self.rknn_model.forward_test(imgs)
assert isinstance(results[0], np.ndarray)
@backend_checker(Backend.ONNXRUNTIME)
def test_build_segmentation_model():
model_cfg = mmengine.Config(
dict(data=dict(test={'type': 'CityscapesDataset'})))
deploy_cfg = generate_mmseg_deploy_config()
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg)
from mmdeploy.codebase.mmseg.deploy.segmentation_model import (
End2EndModel, build_segmentation_model)
segmentor = build_segmentation_model([''], model_cfg, deploy_cfg,
'cpu')
assert isinstance(segmentor, End2EndModel)